These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
261 related articles for article (PubMed ID: 24747124)
1. Jellyfish venomics and venom gland transcriptomics analysis of Stomolophus meleagris to reveal the toxins associated with sting. Li R; Yu H; Xue W; Yue Y; Liu S; Xing R; Li P J Proteomics; 2014 Jun; 106():17-29. PubMed ID: 24747124 [TBL] [Abstract][Full Text] [Related]
2. Combined proteomics and transcriptomics identifies sting-related toxins of jellyfish Cyanea nozakii. Li R; Yu H; Yue Y; Liu S; Xing R; Chen X; Li P J Proteomics; 2016 Oct; 148():57-64. PubMed ID: 27461980 [TBL] [Abstract][Full Text] [Related]
3. Combined Proteome and Toxicology Approach Reveals the Lethality of Venom Toxins from Jellyfish Cyanea nozakii. Li R; Yu H; Yue Y; Li P J Proteome Res; 2018 Nov; 17(11):3904-3913. PubMed ID: 30223649 [TBL] [Abstract][Full Text] [Related]
4. In depth analysis of the in vivo toxicity of venom from the jellyfish Stomolophus meleagris. Li R; Yu H; Yue Y; Liu S; Xing R; Chen X; Wang X; Li P Toxicon; 2014 Dec; 92():60-5. PubMed ID: 25305553 [TBL] [Abstract][Full Text] [Related]
5. Unique Diversity of Sting-Related Toxins Based on Transcriptomic and Proteomic Analysis of the Jellyfish Cyanea capillata and Nemopilema nomurai (Cnidaria: Scyphozoa). Wang C; Wang B; Wang B; Wang Q; Liu G; Wang T; He Q; Zhang L J Proteome Res; 2019 Jan; 18(1):436-448. PubMed ID: 30481029 [TBL] [Abstract][Full Text] [Related]
6. Comprehensive Proteome Reveals the Key Lethal Toxins in the Venom of Jellyfish Li R; Yu H; Li T; Li P J Proteome Res; 2020 Jun; 19(6):2491-2500. PubMed ID: 32374608 [TBL] [Abstract][Full Text] [Related]
7. Proteomic Analysis of Novel Components of Choudhary I; Hwang DH; Lee H; Yoon WD; Chae J; Han CH; Yum S; Kang C; Kim E Toxins (Basel); 2019 Mar; 11(3):. PubMed ID: 30857234 [TBL] [Abstract][Full Text] [Related]
8. Identification and characterization of the key lethal toxin from jellyfish Cyanea nozakii. Li R; Yu H; Li A; Yu C; Li P Int J Biol Macromol; 2023 Mar; 230():123176. PubMed ID: 36621741 [TBL] [Abstract][Full Text] [Related]
9. Isolation and in vitro partial characterization of hemolytic proteins from the nematocyst venom of the jellyfish Stomolophus meleagris. Li R; Yu H; Xing R; Liu S; Qing Y; Li K; Li B; Meng X; Cui J; Li P Toxicol In Vitro; 2013 Sep; 27(6):1620-5. PubMed ID: 23603477 [TBL] [Abstract][Full Text] [Related]
10. The medusa of Aurelia coerulea is similar to its polyp in molecular composition and different from the medusa of Stomolophus meleagris in toxicity. Li X; Ma X; Chen X; Wang T; Liu Q; Wang Y; Li Z; Höfer J; Li F; Xiao L; Sun X; Mo J Toxicon; 2022 Apr; 210():89-99. PubMed ID: 35183571 [TBL] [Abstract][Full Text] [Related]
11. Proteomic analysis of the venom from the scorpion Mesobuthus martensii. Xu X; Duan Z; Di Z; He Y; Li J; Li Z; Xie C; Zeng X; Cao Z; Wu Y; Liang S; Li W J Proteomics; 2014 Jun; 106():162-80. PubMed ID: 24780724 [TBL] [Abstract][Full Text] [Related]
12. Venom-gland transcriptomics and venom proteomics of the black-back scorpion (Hadrurus spadix) reveal detectability challenges and an unexplored realm of animal toxin diversity. Rokyta DR; Ward MJ Toxicon; 2017 Mar; 128():23-37. PubMed ID: 28115184 [TBL] [Abstract][Full Text] [Related]
13. Combined snake venomics and venom gland transcriptomic analysis of the ocellated carpet viper, Echis ocellatus. Wagstaff SC; Sanz L; Juárez P; Harrison RA; Calvete JJ J Proteomics; 2009 Jan; 71(6):609-23. PubMed ID: 19026773 [TBL] [Abstract][Full Text] [Related]
15. Identification of novel proteins from the venom of a cryptic snake Drysdalia coronoides by a combined transcriptomics and proteomics approach. Chatrath ST; Chapeaurouge A; Lin Q; Lim TK; Dunstan N; Mirtschin P; Kumar PP; Kini RM J Proteome Res; 2011 Feb; 10(2):739-50. PubMed ID: 21133350 [TBL] [Abstract][Full Text] [Related]
16. Application of nanoLC-MS/MS to the shotgun proteomic analysis of the nematocyst proteins from jellyfish Stomolophus meleagris. Li R; Yu H; Xing R; Liu S; Qing Y; Li K; Li B; Meng X; Cui J; Li P J Chromatogr B Analyt Technol Biomed Life Sci; 2012 Jun; 899():86-95. PubMed ID: 22651994 [TBL] [Abstract][Full Text] [Related]
17. An integrated transcriptomic and proteomic analysis reveals toxin arsenal of a novel Antarctic jellyfish Cyanea sp. Liang H; Jiang G; Wang T; Zhang J; Liu W; Xu Z; Zhang J; Xiao L J Proteomics; 2019 Sep; 208():103483. PubMed ID: 31401172 [TBL] [Abstract][Full Text] [Related]
18. Intact protein mass spectrometry reveals intraspecies variations in venom composition of a local population of Vipera kaznakovi in Northeastern Turkey. Petras D; Hempel BF; Göçmen B; Karis M; Whiteley G; Wagstaff SC; Heiss P; Casewell NR; Nalbantsoy A; Süssmuth RD J Proteomics; 2019 May; 199():31-50. PubMed ID: 30763806 [TBL] [Abstract][Full Text] [Related]
19. Efficacy of venom from tentacle of jellyfish Stomolophus meleagris (Nemopilema nomurai) against the cotton bollworm Helicoverpa armigera. Yu H; Li R; Dong X; Xing R; Liu S; Li P Biomed Res Int; 2014; 2014():315853. PubMed ID: 25162008 [TBL] [Abstract][Full Text] [Related]
20. Transcriptome and proteome of the highly neurotoxic venom of Gloydius intermedius. Yang ZM; Yang YE; Chen Y; Cao J; Zhang C; Liu LL; Wang ZZ; Wang XM; Wang YM; Tsai IH Toxicon; 2015 Dec; 107(Pt B):175-86. PubMed ID: 26278179 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]