These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

295 related articles for article (PubMed ID: 24747252)

  • 1. Variations of trace metals in two estuarine environments with contrasting pollution histories.
    Weng N; Wang WX
    Sci Total Environ; 2014 Jul; 485-486():604-614. PubMed ID: 24747252
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metal accumulation and differentially expressed proteins in gill of oyster (Crassostrea hongkongensis) exposed to long-term heavy metal-contaminated estuary.
    Luo L; Ke C; Guo X; Shi B; Huang M
    Fish Shellfish Immunol; 2014 Jun; 38(2):318-29. PubMed ID: 24698996
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Time changes in biomarker responses in two species of oyster transplanted into a metal contaminated estuary.
    Liu X; Wang WX
    Sci Total Environ; 2016 Feb; 544():281-90. PubMed ID: 26657374
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Seasonal fluctuations of metal bioaccumulation and reproductive health of local oyster populations in a large contaminated estuary.
    Weng N; Wang WX
    Environ Pollut; 2019 Jul; 250():175-185. PubMed ID: 30995571
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bioaccumulation and metabolomics responses in oysters Crassostrea hongkongensis impacted by different levels of metal pollution.
    Cao C; Wang WX
    Environ Pollut; 2016 Sep; 216():156-165. PubMed ID: 27262129
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spatial variation and subcellular binding of metals in oysters from a large estuary in China.
    Yu XJ; Pan K; Liu F; Yan Y; Wang WX
    Mar Pollut Bull; 2013 May; 70(1-2):274-80. PubMed ID: 23537691
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spatial-temporal variations and trends predication of trace metals in oysters from the Pearl River Estuary of China during 2011-2018.
    Lu G; Pan K; Zhu A; Dong Y; Wang WX
    Environ Pollut; 2020 Sep; 264():114812. PubMed ID: 32559869
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Antioxidant and detoxification responses of oysters Crassostrea hongkongensis in a multimetal-contaminated estuary.
    Liu X; Wang WX
    Environ Toxicol Chem; 2016 Nov; 35(11):2798-2805. PubMed ID: 27071024
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Depuration of metals by the green-colored oyster Crassostrea sikamea.
    Wang L; Wang WX
    Environ Toxicol Chem; 2014 Oct; 33(10):2379-85. PubMed ID: 25053576
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Temporal distribution of heavy metal concentrations in oysters Crassostrea rhizophorae from the central Venezuelan coast.
    Alfonso JA; Handt H; Mora A; Vásquez Y; Azocar J; Marcano E
    Mar Pollut Bull; 2013 Aug; 73(1):394-8. PubMed ID: 23746942
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biomarker responses in oysters Crassostrea hongkongensis in relation to metal contamination patterns in the Pearl River Estuary, southern China.
    Chan CY; Wang WX
    Environ Pollut; 2019 Aug; 251():264-276. PubMed ID: 31082611
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Physiological and cellular responses of oysters (Crassostrea hongkongensis) in a multimetal-contaminated estuary.
    Liu X; Wang WX
    Environ Toxicol Chem; 2016 Oct; 35(10):2577-2586. PubMed ID: 26970367
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Geochemical survey and metal bioaccumulation of three bivalve species (Crassostrea gigas, Cerastoderma edule and Ruditapes philippinarum) in the Nord Medoc salt marshes (Gironde estuary, France).
    Baudrimont M; Schäfer J; Marie V; Maury-Brachet R; Bossy C; Boudou A; Blanc G
    Sci Total Environ; 2005 Jan; 337(1-3):265-80. PubMed ID: 15626396
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reproductive responses and detoxification of estuarine oyster Crassostrea hongkongensis under metal stress: a seasonal study.
    Weng N; Wang WX
    Environ Sci Technol; 2015 Mar; 49(5):3119-27. PubMed ID: 25660751
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The use of the oyster Saccostrea glomerata as a biomonitor of trace metal contamination: intra-sample, local scale and temporal variability and its implications for biomonitoring.
    Robinson WA; Maher WA; Krikowa F; Nell JA; Hand R
    J Environ Monit; 2005 Mar; 7(3):208-23. PubMed ID: 15735780
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A comparative proteomic study on the effects of metal pollution in oysters Crassostrea hongkongensis.
    Xu L; Ji C; Wu H; Tan Q; Wang WX
    Mar Pollut Bull; 2016 Nov; 112(1-2):436-442. PubMed ID: 27402499
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biomonitoring of metals under the water framework directive: detecting temporal trends and abrupt changes, in relation to the removal of pollution sources.
    Solaun O; Rodríguez JG; Borja A; González M; Saiz-Salinas JI
    Mar Pollut Bull; 2013 Feb; 67(1-2):26-35. PubMed ID: 23279998
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Seasonal variations and relationships between environmental parameters and heavy metal concentrations in tissues of Crassostrea species and in its ambience from the tropical estuaries.
    Shenai-Tirodkar P; Gauns M; Kumar G; Ansari Z
    Environ Sci Pollut Res Int; 2018 Jul; 25(21):20930-20945. PubMed ID: 29766426
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Proteome pattern in oysters as a diagnostic tool for metal pollution.
    Liu F; Wang WX
    J Hazard Mater; 2012 Nov; 239-240():241-8. PubMed ID: 22999020
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biokinetics and metallothionein-like proteins response in oysters facing metal challenges in an estuary.
    Jin Y; Wang WX
    Environ Toxicol Chem; 2015 Aug; 34(8):1818-25. PubMed ID: 25781002
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.