BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 24747382)

  • 1. Estimation of optimum specific light intensity per cell on a high-cell-density continuous culture of Chlorella zofingiensis not limited by nutrients or CO₂.
    Imaizumi Y; Nagao N; Yusoff FM; Taguchi S; Toda T
    Bioresour Technol; 2014 Jun; 162():53-9. PubMed ID: 24747382
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Maximizing biomass productivity and cell density of Chlorella vulgaris by using light-emitting diode-based photobioreactor.
    Fu W; Gudmundsson O; Feist AM; Herjolfsson G; Brynjolfsson S; Palsson BØ
    J Biotechnol; 2012 Oct; 161(3):242-9. PubMed ID: 22796827
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improving CO2 fixation efficiency by optimizing Chlorella PY-ZU1 culture conditions in sequential bioreactors.
    Cheng J; Huang Y; Feng J; Sun J; Zhou J; Cen K
    Bioresour Technol; 2013 Sep; 144():321-7. PubMed ID: 23891832
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lipid accumulation and growth of Chlorella zofingiensis in flat plate photobioreactors outdoors.
    Feng P; Deng Z; Hu Z; Fan L
    Bioresour Technol; 2011 Nov; 102(22):10577-84. PubMed ID: 21955881
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reduction of CO2 by a high-density culture of Chlorella sp. in a semicontinuous photobioreactor.
    Chiu SY; Kao CY; Chen CH; Kuan TC; Ong SC; Lin CS
    Bioresour Technol; 2008 Jun; 99(9):3389-96. PubMed ID: 17904359
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A screening model to predict microalgae biomass growth in photobioreactors and raceway ponds.
    Huesemann MH; Van Wagenen J; Miller T; Chavis A; Hobbs S; Crowe B
    Biotechnol Bioeng; 2013 Jun; 110(6):1583-94. PubMed ID: 23280255
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mixotrophic continuous flow cultivation of Chlorella protothecoides for lipids.
    Wang Y; Rischer H; Eriksen NT; Wiebe MG
    Bioresour Technol; 2013 Sep; 144():608-14. PubMed ID: 23907064
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhanced lipid productivity of Chlorella pyrenoidosa through the culture strategy of semi-continuous cultivation with nitrogen limitation and pH control by CO2.
    Han F; Huang J; Li Y; Wang W; Wan M; Shen G; Wang J
    Bioresour Technol; 2013 May; 136():418-24. PubMed ID: 23567711
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of light intensity on algal biomass accumulation and biodiesel production for mixotrophic strains Chlorella kessleri and Chlorella protothecoide cultivated in highly concentrated municipal wastewater.
    Li Y; Zhou W; Hu B; Min M; Chen P; Ruan RR
    Biotechnol Bioeng; 2012 Sep; 109(9):2222-9. PubMed ID: 22407758
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lipid accumulation and growth characteristics of Chlorella zofingiensis under different nitrate and phosphate concentrations.
    Feng P; Deng Z; Fan L; Hu Z
    J Biosci Bioeng; 2012 Oct; 114(4):405-10. PubMed ID: 22698727
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Assessment of key biological and engineering design parameters for production of Chlorella zofingiensis (Chlorophyceae) in outdoor photobioreactors.
    Zemke PE; Sommerfeld MR; Hu Q
    Appl Microbiol Biotechnol; 2013 Jun; 97(12):5645-55. PubMed ID: 23653122
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mutate Chlorella sp. by nuclear irradiation to fix high concentrations of CO2.
    Cheng J; Huang Y; Feng J; Sun J; Zhou J; Cen K
    Bioresour Technol; 2013 May; 136():496-501. PubMed ID: 23567722
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bioenergetic changes in the microalgal photosynthetic apparatus by extremely high CO2 concentrations induce an intense biomass production.
    Papazi A; Makridis P; Divanach P; Kotzabasis K
    Physiol Plant; 2008 Mar; 132(3):338-49. PubMed ID: 18275465
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Two-step cultivation for production of astaxanthin in Chlorella zofingiensis using a patented energy-free rotating floating photobioreactor (RFP).
    Zhang Z; Huang JJ; Sun D; Lee Y; Chen F
    Bioresour Technol; 2017 Jan; 224():515-522. PubMed ID: 27818161
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Estimation of carbon dioxide sequestration potential of microalgae grown in a batch photobioreactor.
    Kargupta W; Ganesh A; Mukherji S
    Bioresour Technol; 2015 Mar; 180():370-5. PubMed ID: 25616748
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Irradiance optimization of outdoor microalgal cultures using solar tracked photobioreactors.
    Hindersin S; Leupold M; Kerner M; Hanelt D
    Bioprocess Biosyst Eng; 2013 Mar; 36(3):345-55. PubMed ID: 22847362
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of inoculum physiological stage on the growth characteristics of Chlorella sorokiniana cultivated under different CO(2) concentrations.
    Mattos ER; Singh M; Cabrera ML; Das KC;
    Appl Biochem Biotechnol; 2012 Oct; 168(3):519-30. PubMed ID: 22836749
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biofilm cultivation of the oleaginous microalgae Pseudochlorococcum sp.
    Ji B; Zhang W; Zhang N; Wang J; Lutzu GA; Liu T
    Bioprocess Biosyst Eng; 2014 Jul; 37(7):1369-75. PubMed ID: 24362561
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Batch Cultivation for Astaxanthin Analysis Using the Green Microalga Chlorella zofingiensis Under Multitrophic Growth Conditions.
    Liu J
    Methods Mol Biol; 2018; 1852():97-106. PubMed ID: 30109626
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of various LED light wavelengths and intensities on microalgae-based simultaneous biogas upgrading and digestate nutrient reduction process.
    Zhao Y; Wang J; Zhang H; Yan C; Zhang Y
    Bioresour Technol; 2013 May; 136():461-8. PubMed ID: 23567717
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.