These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 24747396)

  • 21. Pathways of nitrobenzene degradation in horizontal subsurface flow constructed wetlands: Effect of intermittent aeration and glucose addition.
    Kirui WK; Wu S; Kizito S; Carvalho PN; Dong R
    J Environ Manage; 2016 Jan; 166():38-44. PubMed ID: 26468606
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effects of aeration position on organics, nitrogen and phosphorus removal in combined oxidation pond-constructed wetland systems.
    Wang X; Tian Y; Zhao X; Peng S; Wu Q; Yan L
    Bioresour Technol; 2015 Dec; 198():7-15. PubMed ID: 26360599
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Treatment of landfill leachate using an aerated, horizontal subsurface-flow constructed wetland.
    Nivala J; Hoos MB; Cross C; Wallace S; Parkin G
    Sci Total Environ; 2007 Jul; 380(1-3):19-27. PubMed ID: 17241653
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Decentralized domestic wastewater treatment using intermittently aerated vertical flow constructed wetlands: impact of influent strengths.
    Wu H; Fan J; Zhang J; Ngo HH; Guo W; Hu Z; Liang S
    Bioresour Technol; 2015 Jan; 176():163-8. PubMed ID: 25460998
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Ammonia-based intermittent aeration control optimized for efficient nitrogen removal.
    Regmi P; Bunce R; Miller MW; Park H; Chandran K; Wett B; Murthy S; Bott CB
    Biotechnol Bioeng; 2015 Oct; 112(10):2060-7. PubMed ID: 26058705
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effect of spray aeration on organics and nitrogen removal in vertical subsurface flow constructed wetland.
    Ding Y; Wang W; Song XS; Wang G; Wang YH
    Chemosphere; 2014 Dec; 117():502-5. PubMed ID: 25259785
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Modeling the relationship of aeration, oxygen transfer and treatment performance in aerated horizontal flow treatment wetlands.
    Boog J; Kalbacher T; Nivala J; Forquet N; van Afferden M; Müller RA
    Water Res; 2019 Jun; 157():321-334. PubMed ID: 30959335
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [Dynamics model analysis of pollutants removal in aerated vertical-flow wetland].
    Pan JZ; Ke F; Li WC
    Huan Jing Ke Xue; 2010 Nov; 31(11):2633-8. PubMed ID: 21250444
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Pollutant removal within hybrid constructed wetland systems in tropical regions.
    Yeh TY; Wu CH
    Water Sci Technol; 2009; 59(2):233-40. PubMed ID: 19182332
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effects of intermittent loading on nitrogen removal in horizontal subsurface flow wetlands.
    Forbes MG; Yelderman JC; Potterton T; Doyle RD
    Water Sci Technol; 2010; 62(8):1865-71. PubMed ID: 20962402
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Study on the purification effect of aeration-enhanced horizontal subsurface-flow constructed wetland on polluted urban river water.
    Liu G; He T; Liu Y; Chen Z; Li L; Huang Q; Xie Z; Xie Y; Wu L; Liu J
    Environ Sci Pollut Res Int; 2019 May; 26(13):12867-12880. PubMed ID: 30891700
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Recirculating vertical flow constructed wetland: green alternative to treating both human and animal sewage.
    García-Pérez A; Harrison M; Grant B
    J Environ Health; 2009 Nov; 72(4):17-20. PubMed ID: 19908434
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Nitrogen removal from domestic effluent using subsurface flow constructed wetlands: influence of depth, hydraulic residence time and pre-nitrification.
    Bayley ML; Davison L; Headley TR
    Water Sci Technol; 2003; 48(5):175-82. PubMed ID: 14621162
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [Removal efficiency of nitrogen in aerobic/anaerobic subsurface flow constructed wetlands].
    Li FM; Shan S; Wang HY; Song N; Wang ZY
    Huan Jing Ke Xue; 2011 Jan; 32(1):151-7. PubMed ID: 21404680
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Nitrate removal from groundwater using constructed wetlands under various hydraulic loading rates.
    Lin YF; Jing SR; Lee DY; Chang YF; Shih KC
    Bioresour Technol; 2008 Nov; 99(16):7504-13. PubMed ID: 18387297
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Variation of dissolved oxygen and redox potential and their correlation with microbial population along a novel horizontal subsurface flow wetland.
    Zhai J; Zou J; He Q; Ning K; Xiao H
    Environ Technol; 2012 Sep; 33(16-18):1999-2006. PubMed ID: 23240193
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Microporous intermittent aeration vertical flow constructed wetlands for eutrophic water improvement.
    Wu Q; Xiao J; Fu L; Ma M; Peng S
    Environ Sci Pollut Res Int; 2020 May; 27(14):16574-16583. PubMed ID: 32125639
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Enhanced P, N and C removal from domestic wastewater using constructed wetland employing construction solid waste (CSW) as main substrate.
    Yang Y; Wang ZM; Liu C; Guo XC
    Water Sci Technol; 2012; 66(5):1022-8. PubMed ID: 22797230
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Newly developed baffled subsurface-flow constructed wetland for the enhancement of nitrogen removal.
    Tee HC; Lim PE; Seng CE; Nawi MA
    Bioresour Technol; 2012 Jan; 104():235-42. PubMed ID: 22130081
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A two-stage subsurface vertical flow constructed wetland for high-rate nitrogen removal.
    Langergraber G; Leroch K; Pressl A; Rohrhofer R; Haberl R
    Water Sci Technol; 2008; 57(12):1881-7. PubMed ID: 18587174
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.