These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
385 related articles for article (PubMed ID: 24747570)
1. A regeneratable, label-free, localized surface plasmon resonance (LSPR) aptasensor for the detection of ochratoxin A. Park JH; Byun JY; Mun H; Shim WB; Shin YB; Li T; Kim MG Biosens Bioelectron; 2014 Sep; 59():321-7. PubMed ID: 24747570 [TBL] [Abstract][Full Text] [Related]
2. A highly sensitive and widely adaptable plasmonic aptasensor using berberine for small-molecule detection. Park JH; Byun JY; Jang H; Hong D; Kim MG Biosens Bioelectron; 2017 Nov; 97():292-298. PubMed ID: 28618365 [TBL] [Abstract][Full Text] [Related]
3. An optical fiber-based LSPR aptasensor for simple and rapid in-situ detection of ochratoxin A. Lee B; Park JH; Byun JY; Kim JH; Kim MG Biosens Bioelectron; 2018 Apr; 102():504-509. PubMed ID: 29197812 [TBL] [Abstract][Full Text] [Related]
4. An aptamer based surface plasmon resonance biosensor for the detection of ochratoxin A in wine and peanut oil. Zhu Z; Feng M; Zuo L; Zhu Z; Wang F; Chen L; Li J; Shan G; Luo SZ Biosens Bioelectron; 2015 Mar; 65():320-6. PubMed ID: 25461176 [TBL] [Abstract][Full Text] [Related]
5. Nanostructure shape effects on response of plasmonic aptamer sensors. Balamurugan S; Mayer KM; Lee S; Soper SA; Hafner JH; Spivak DA J Mol Recognit; 2013 Sep; 26(9):402-7. PubMed ID: 23836467 [TBL] [Abstract][Full Text] [Related]
6. Surface-enhanced Raman spectroscopy aptasensor for simultaneous determination of ochratoxin A and zearalenone using Au@Ag core-shell nanoparticles and gold nanorods. Chen R; Li S; Sun Y; Huo B; Xia Y; Qin Y; Li S; Shi B; He D; Liang J; Gao Z Mikrochim Acta; 2021 Jul; 188(8):281. PubMed ID: 34331147 [TBL] [Abstract][Full Text] [Related]
7. Label-free detection of tobramycin in serum by transmission-localized surface plasmon resonance. Cappi G; Spiga FM; Moncada Y; Ferretti A; Beyeler M; Bianchessi M; Decosterd L; Buclin T; Guiducci C Anal Chem; 2015 May; 87(10):5278-85. PubMed ID: 25811093 [TBL] [Abstract][Full Text] [Related]
8. An electrochemical competitive biosensor for ochratoxin A based on a DNA biotinylated aptamer. Bonel L; Vidal JC; Duato P; Castillo JR Biosens Bioelectron; 2011 Mar; 26(7):3254-9. PubMed ID: 21256729 [TBL] [Abstract][Full Text] [Related]
9. Electrochemiluminescence biosensor for ultrasensitive determination of ochratoxin A in corn samples based on aptamer and hyperbranched rolling circle amplification. Yang L; Zhang Y; Li R; Lin C; Guo L; Qiu B; Lin Z; Chen G Biosens Bioelectron; 2015 Aug; 70():268-74. PubMed ID: 25835519 [TBL] [Abstract][Full Text] [Related]
10. Portable optical aptasensor for rapid detection of mycotoxin with a reversible ligand-grafted biosensing surface. Liu LH; Zhou XH; Shi HC Biosens Bioelectron; 2015 Oct; 72():300-5. PubMed ID: 26000463 [TBL] [Abstract][Full Text] [Related]
11. Surface plasmon resonance biosensor for the detection of ochratoxin A in cereals and beverages. Yuan J; Deng D; Lauren DR; Aguilar MI; Wu Y Anal Chim Acta; 2009 Dec; 656(1-2):63-71. PubMed ID: 19932816 [TBL] [Abstract][Full Text] [Related]
12. Increasing the spectral shifts in LSPR biosensing using DNA-functionalized gold nanorods in a competitive assay format for the detection of interferon-γ. Lin DZ; Chuang PC; Liao PC; Chen JP; Chen YF Biosens Bioelectron; 2016 Jul; 81():221-228. PubMed ID: 26954787 [TBL] [Abstract][Full Text] [Related]
13. A fluorescent aptasensor based on DNA-scaffolded silver-nanocluster for ochratoxin A detection. Chen J; Zhang X; Cai S; Wu D; Chen M; Wang S; Zhang J Biosens Bioelectron; 2014 Jul; 57():226-31. PubMed ID: 24590125 [TBL] [Abstract][Full Text] [Related]
14. Amplified fluorescent aptasensor through catalytic recycling for highly sensitive detection of ochratoxin A. Wei Y; Zhang J; Wang X; Duan Y Biosens Bioelectron; 2015 Mar; 65():16-22. PubMed ID: 25461133 [TBL] [Abstract][Full Text] [Related]
15. Microfluidic channel with embedded SERS 2D platform for the aptamer detection of ochratoxin A. Galarreta BC; Tabatabaei M; Guieu V; Peyrin E; Lagugné-Labarthet F Anal Bioanal Chem; 2013 Feb; 405(5):1613-21. PubMed ID: 23187825 [TBL] [Abstract][Full Text] [Related]
16. Rapid high-throughput analysis of ochratoxin A by the self-assembly of DNAzyme-aptamer conjugates in wine. Yang C; Lates V; Prieto-Simón B; Marty JL; Yang X Talanta; 2013 Nov; 116():520-6. PubMed ID: 24148439 [TBL] [Abstract][Full Text] [Related]
17. Exonuclease-assisted multicolor aptasensor for visual detection of ochratoxin A based on G-quadruplex-hemin DNAzyme-mediated etching of gold nanorod. Yu X; Lin Y; Wang X; Xu L; Wang Z; Fu F Mikrochim Acta; 2018 Apr; 185(5):259. PubMed ID: 29680954 [TBL] [Abstract][Full Text] [Related]
18. Plasmonic detection of a model analyte in serum by a gold nanorod sensor. Marinakos SM; Chen S; Chilkoti A Anal Chem; 2007 Jul; 79(14):5278-83. PubMed ID: 17567106 [TBL] [Abstract][Full Text] [Related]
19. Multicolor colorimetric detection of ochratoxin A via structure-switching aptamer and enzyme-induced metallization of gold nanorods. Tian F; Zhou J; Fu R; Cui Y; Zhao Q; Jiao B; He Y Food Chem; 2020 Aug; 320():126607. PubMed ID: 32203832 [TBL] [Abstract][Full Text] [Related]
20. Persistent luminescence nanorod based luminescence resonance energy transfer aptasensor for autofluorescence-free detection of mycotoxin. Jiang YY; Zhao X; Chen LJ; Yang C; Yin XB; Yan XP Talanta; 2020 Oct; 218():121101. PubMed ID: 32797868 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]