BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 24747677)

  • 1. Activity of the mitochondrial pyruvate dehydrogenase complex in plants is stimulated in the presence of malate.
    Igamberdiev AU; Lernmark U; Gardeström P
    Mitochondrion; 2014 Nov; 19 Pt B():184-90. PubMed ID: 24747677
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Glycine decarboxylase and pyruvate dehydrogenase complexes share the same dihydrolipoamide dehydrogenase in pea leaf mitochondria: evidence from mass spectrometry and primary-structure analysis.
    Bourguignon J; Merand V; Rawsthorne S; Forest E; Douce R
    Biochem J; 1996 Jan; 313 ( Pt 1)(Pt 1):229-34. PubMed ID: 8546688
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regulation of the phosphorylation of mitochondrial pyruvate dehydrogenase complex in situ: effects of respiratory substrates and calcium.
    Budde RJ; Fang TK; Randall DD
    Plant Physiol; 1988 Dec; 88(4):1031-6. PubMed ID: 16666416
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of L-malate on pyruvate dehydrogenase activity of spermatozoa.
    Gerez de Burgos NM; Gallina F; Burgos C; Blanco A
    Arch Biochem Biophys; 1994 Feb; 308(2):520-4. PubMed ID: 8109983
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of fatty acids and ketones on the activity of pyruvate dehydrogenase in skeletal-muscle mitochondria.
    Ashour B; Hansford RG
    Biochem J; 1983 Sep; 214(3):725-36. PubMed ID: 6138029
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Oxidation and reduction of pyridine nucleotides in alamethicin-permeabilized plant mitochondria.
    Johansson FI; Michalecka AM; Møller IM; Rasmusson AG
    Biochem J; 2004 May; 380(Pt 1):193-202. PubMed ID: 14972026
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of bicarbonate and oxaloacetate on malate oxidation by spinach leaf mitochondria.
    Neuburger M; Douce R
    Biochim Biophys Acta; 1980 Feb; 589(2):176-89. PubMed ID: 7356982
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Novel regulation of pyruvate dehydrogenase phosphatase purified from anaerobic muscle mitochondria of the adult parasitic nematode, Ascaris suum.
    Song H; Komuniecki R
    J Biol Chem; 1994 Dec; 269(50):31573-8. PubMed ID: 7989326
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 2-Oxoglutarate dehydrogenase and pyruvate dehydrogenase activities in plant mitochondria: interaction via a common coenzyme a pool.
    Dry IB; Wiskich JT
    Arch Biochem Biophys; 1987 Aug; 257(1):92-9. PubMed ID: 3631965
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regulation of NAD- and NADP-dependent isocitrate dehydrogenases by reduction levels of pyridine nucleotides in mitochondria and cytosol of pea leaves.
    Igamberdiev AU; Gardeström P
    Biochim Biophys Acta; 2003 Sep; 1606(1-3):117-25. PubMed ID: 14507432
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The photorespiratory hydrogen shuttle. Synthesis of phthalonic acid and its use in the characterization of the malate/aspartate shuttle in pea (Pisum sativum) leaf mitochondria.
    Dry IB; Dimitriadis E; Ward AD; Wiskich JT
    Biochem J; 1987 Aug; 245(3):669-75. PubMed ID: 3663185
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Kinetics and regulation of hepatoma mitochondrial NAD(P) malic enzyme.
    Teller JK; Fahien LA; Davis JW
    J Biol Chem; 1992 May; 267(15):10423-32. PubMed ID: 1587826
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Changes in the electron transport chain of pea leaf mitochondria metabolizing malate.
    Walker GH; Oliver DJ
    Arch Biochem Biophys; 1983 Sep; 225(2):847-53. PubMed ID: 6625611
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Oxidation of malate, NADH and glycine in C3 and C4 plant mitochondria].
    Neuburger M; Douce R
    C R Acad Hebd Seances Acad Sci D; 1977 Oct; 285(8):881-4. PubMed ID: 199373
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Oxidation of pyruvate, malate, citrate, and cytosolic reducing equivalents by AS-30D hepatoma mitochondria.
    Dietzen DJ; Davis EJ
    Arch Biochem Biophys; 1993 Aug; 305(1):91-102. PubMed ID: 8342959
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Environmental stress causes oxidative damage to plant mitochondria leading to inhibition of glycine decarboxylase.
    Taylor NL; Day DA; Millar AH
    J Biol Chem; 2002 Nov; 277(45):42663-8. PubMed ID: 12213810
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interactions between pyruvate carboxylase and other mitochondrial enzymes.
    Fahien LA; Davis JW; Laboy J
    J Biol Chem; 1993 Aug; 268(24):17935-42. PubMed ID: 8349677
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Resolution and characterization of the glycine-cleavage reaction in pea leaf mitochondria. Properties of the forward reaction catalysed by glycine decarboxylase and serine hydroxymethyltransferase.
    Bourguignon J; Neuburger M; Douce R
    Biochem J; 1988 Oct; 255(1):169-78. PubMed ID: 3143355
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulation of pyruvate dehydrogenase in rat heart. Mechanism of regulation of proportions of dephosphorylated and phosphorylated enzyme by oxidation of fatty acids and ketone bodies and of effects of diabetes: role of coenzyme A, acetyl-coenzyme A and reduced and oxidized nicotinamide-adenine dinucleotide.
    Kerbey AL; Randle PJ; Cooper RH; Whitehouse S; Pask HT; Denton RM
    Biochem J; 1976 Feb; 154(2):327-48. PubMed ID: 180974
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The cytotoxic lipid peroxidation product, 4-hydroxy-2-nonenal, specifically inhibits decarboxylating dehydrogenases in the matrix of plant mitochondria.
    Millar AH; Leaver CJ
    FEBS Lett; 2000 Sep; 481(2):117-21. PubMed ID: 10996308
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.