These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
142 related articles for article (PubMed ID: 24747721)
1. Classification of fricative consonants for speech enhancement in hearing devices. Kong YY; Mullangi A; Kokkinakis K PLoS One; 2014; 9(4):e95001. PubMed ID: 24747721 [TBL] [Abstract][Full Text] [Related]
2. Using a vocoder-based frequency-lowering method and spectral enhancement to improve place-of-articulation perception for hearing-impaired listeners. Kong YY; Mullangi A Ear Hear; 2013; 34(3):300-12. PubMed ID: 23165224 [TBL] [Abstract][Full Text] [Related]
3. Wearable Hearing Device Spectral Enhancement Driven by Non-Negative Sparse Coding-Based Residual Noise Reduction. Kim SM Sensors (Basel); 2020 Oct; 20(20):. PubMed ID: 33050447 [TBL] [Abstract][Full Text] [Related]
5. Effects of Simulated Hearing Loss on Bilingual Children's Consonant Recognition in Noise. Nishi K; Trevino AC; Rosado Rogers L; GarcĂa P; Neely ST Ear Hear; 2017; 38(5):e292-e304. PubMed ID: 28353522 [TBL] [Abstract][Full Text] [Related]
6. Speech recognition performance of patients with sensorineural hearing loss under unaided and aided conditions using linear and compression hearing AIDS. Shanks JE; Wilson RH; Larson V; Williams D Ear Hear; 2002 Aug; 23(4):280-90. PubMed ID: 12195170 [TBL] [Abstract][Full Text] [Related]
7. Effects of frequency compression and frequency transposition on fricative and affricate perception in listeners with normal hearing and mild to moderate hearing loss. Alexander JM; Kopun JG; Stelmachowicz PG Ear Hear; 2014; 35(5):519-32. PubMed ID: 24699702 [TBL] [Abstract][Full Text] [Related]
8. Digital noise reduction in hearing aids and its acoustic effect on consonants /s/ and /z/. Chong FY; Jenstad LM Med J Malaysia; 2018 Dec; 73(6):365-370. PubMed ID: 30647205 [TBL] [Abstract][Full Text] [Related]
9. Effects of noise reduction on AM and FM perception. Ives DT; Calcus A; Kalluri S; Strelcyk O; Sheft S; Lorenzi C J Assoc Res Otolaryngol; 2013 Feb; 14(1):149-57. PubMed ID: 23180229 [TBL] [Abstract][Full Text] [Related]
10. A Two-Level Speaker Identification System via Fusion of Heterogeneous Classifiers and Complementary Feature Cooperation. Al-Qaderi M; Lahamer E; Rad A Sensors (Basel); 2021 Jul; 21(15):. PubMed ID: 34372334 [TBL] [Abstract][Full Text] [Related]
11. Acoustic-phonetic features for the automatic classification of fricatives. Ali AM; Van der Spiegel J; Mueller P J Acoust Soc Am; 2001 May; 109(5 Pt 1):2217-35. PubMed ID: 11386573 [TBL] [Abstract][Full Text] [Related]
12. Efficacy of linear frequency transposition on consonant identification in quiet and in noise. Kuk F; Keenan D; Korhonen P; Lau CC J Am Acad Audiol; 2009 Sep; 20(8):465-79. PubMed ID: 19764167 [TBL] [Abstract][Full Text] [Related]
13. Fitting Frequency-Lowering Signal Processing Applying the American Academy of Audiology Pediatric Amplification Guideline: Updates and Protocols. Scollie S; Glista D; Seto J; Dunn A; Schuett B; Hawkins M; Pourmand N; Parsa V J Am Acad Audiol; 2016 Mar; 27(3):219-236. PubMed ID: 26967363 [TBL] [Abstract][Full Text] [Related]