These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
6. Exploiting natural variation to identify insect-resistance genes. Broekgaarden C; Snoeren TA; Dicke M; Vosman B Plant Biotechnol J; 2011 Oct; 9(8):819-25. PubMed ID: 21679292 [TBL] [Abstract][Full Text] [Related]
7. Genetic Engineering Approaches for Enhanced Insect Pest Resistance in Sugarcane. Iqbal A; Khan RS; Khan MA; Gul K; Jalil F; Shah DA; Rahman H; Ahmed T Mol Biotechnol; 2021 Jul; 63(7):557-568. PubMed ID: 33893996 [TBL] [Abstract][Full Text] [Related]
8. Prospects for reducing fumonisin contamination of maize through genetic modification. Duvick J Environ Health Perspect; 2001 May; 109 Suppl 2(Suppl 2):337-42. PubMed ID: 11359705 [TBL] [Abstract][Full Text] [Related]
9. Prospects for using proteinase inhibitors to protect transgenic plants against attack by herbivorous insects. Gatehouse JA Curr Protein Pept Sci; 2011 Aug; 12(5):409-16. PubMed ID: 21418023 [TBL] [Abstract][Full Text] [Related]
10. Genetic engineering of crops for insect resistance: An overview. Talakayala A; Katta S; Garladinne M J Biosci; 2020; 45():. PubMed ID: 33051408 [TBL] [Abstract][Full Text] [Related]
11. Improving plant-resistance to insect-pests and pathogens: The new opportunities through targeted genome editing. Bisht DS; Bhatia V; Bhattacharya R Semin Cell Dev Biol; 2019 Dec; 96():65-76. PubMed ID: 31039395 [TBL] [Abstract][Full Text] [Related]
12. Mechanisms of plant defense against insect herbivores. War AR; Paulraj MG; Ahmad T; Buhroo AA; Hussain B; Ignacimuthu S; Sharma HC Plant Signal Behav; 2012 Oct; 7(10):1306-20. PubMed ID: 22895106 [TBL] [Abstract][Full Text] [Related]
13. Surge in insect resistance to transgenic crops and prospects for sustainability. Tabashnik BE; Carrière Y Nat Biotechnol; 2017 Oct; 35(10):926-935. PubMed ID: 29020006 [TBL] [Abstract][Full Text] [Related]
14. Current situation of pests targeted by Bt crops in Latin America. Blanco CA; Chiaravalle W; Dalla-Rizza M; Farias JR; García-Degano MF; Gastaminza G; Mota-Sánchez D; Murúa MG; Omoto C; Pieralisi BK; Rodríguez J; Rodríguez-Maciel JC; Terán-Santofimio H; Terán-Vargas AP; Valencia SJ; Willink E Curr Opin Insect Sci; 2016 Jun; 15():131-8. PubMed ID: 27436743 [TBL] [Abstract][Full Text] [Related]
15. Insect-Resistant Genetically Engineered Crops in China: Development, Application, and Prospects for Use. Li Y; Hallerman EM; Wu K; Peng Y Annu Rev Entomol; 2020 Jan; 65():273-292. PubMed ID: 31594412 [TBL] [Abstract][Full Text] [Related]
16. Delivering sustainable crop protection systems via the seed: exploiting natural constitutive and inducible defence pathways. Pickett JA; Aradottír GI; Birkett MA; Bruce TJ; Hooper AM; Midega CA; Jones HD; Matthes MC; Napier JA; Pittchar JO; Smart LE; Woodcock CM; Khan ZR Philos Trans R Soc Lond B Biol Sci; 2014 Apr; 369(1639):20120281. PubMed ID: 24535389 [TBL] [Abstract][Full Text] [Related]
19. The value of insect management to US maize, soybean and cotton farmers. Hurley TM; Mitchell PD Pest Manag Sci; 2020 Dec; 76(12):4159-4172. PubMed ID: 32597004 [TBL] [Abstract][Full Text] [Related]
20. Can Pyramids and Seed Mixtures Delay Resistance to Bt Crops? Carrière Y; Fabrick JA; Tabashnik BE Trends Biotechnol; 2016 Apr; 34(4):291-302. PubMed ID: 26774592 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]