BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 24747827)

  • 1. A re-assessment of long distance growth and connectivity of neural stem cells after severe spinal cord injury.
    Sharp KG; Yee KM; Steward O
    Exp Neurol; 2014 Jul; 257():186-204. PubMed ID: 24747827
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optimization of trophic support for neural stem cell grafts in sites of spinal cord injury.
    Robinson J; Lu P
    Exp Neurol; 2017 May; 291():87-97. PubMed ID: 28189728
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Human neural stem cells promote corticospinal axons regeneration and synapse reformation in injured spinal cord of rats.
    Liang P; Jin LH; Liang T; Liu EZ; Zhao SG
    Chin Med J (Engl); 2006 Aug; 119(16):1331-8. PubMed ID: 16934177
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A re-assessment of the consequences of delayed transplantation of olfactory lamina propria following complete spinal cord transection in rats.
    Steward O; Sharp K; Selvan G; Hadden A; Hofstadter M; Au E; Roskams J
    Exp Neurol; 2006 Apr; 198(2):483-99. PubMed ID: 16494866
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A re-assessment of the effects of a Nogo-66 receptor antagonist on regenerative growth of axons and locomotor recovery after spinal cord injury in mice.
    Steward O; Sharp K; Yee KM; Hofstadter M
    Exp Neurol; 2008 Feb; 209(2):446-68. PubMed ID: 18234196
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Promotion of survival and differentiation of neural stem cells with fibrin and growth factor cocktails after severe spinal cord injury.
    Lu P; Graham L; Wang Y; Wu D; Tuszynski M
    J Vis Exp; 2014 Jul; (89):e50641. PubMed ID: 25145787
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transplants and neurotrophic factors increase regeneration and recovery of function after spinal cord injury.
    Bregman BS; Coumans JV; Dai HN; Kuhn PL; Lynskey J; McAtee M; Sandhu F
    Prog Brain Res; 2002; 137():257-73. PubMed ID: 12440372
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Axonal regeneration and functional recovery after complete spinal cord transection in rats by delayed treatment with transplants and neurotrophins.
    Coumans JV; Lin TT; Dai HN; MacArthur L; McAtee M; Nash C; Bregman BS
    J Neurosci; 2001 Dec; 21(23):9334-44. PubMed ID: 11717367
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Olfactory Ensheathing Cell Transplantation after a Complete Spinal Cord Transection Mediates Neuroprotective and Immunomodulatory Mechanisms to Facilitate Regeneration.
    Khankan RR; Griffis KG; Haggerty-Skeans JR; Zhong H; Roy RR; Edgerton VR; Phelps PE
    J Neurosci; 2016 Jun; 36(23):6269-86. PubMed ID: 27277804
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Motor recovery and anatomical evidence of axonal regrowth in spinal cord-repaired adult rats.
    Lee YS; Lin CY; Robertson RT; Hsiao I; Lin VW
    J Neuropathol Exp Neurol; 2004 Mar; 63(3):233-45. PubMed ID: 15055447
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A re-assessment of the effects of treatment with a non-steroidal anti-inflammatory (ibuprofen) on promoting axon regeneration via RhoA inhibition after spinal cord injury.
    Sharp KG; Yee KM; Stiles TL; Aguilar RM; Steward O
    Exp Neurol; 2013 Oct; 248():321-37. PubMed ID: 23830951
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transplanting neural progenitors into a complete transection model of spinal cord injury.
    Medalha CC; Jin Y; Yamagami T; Haas C; Fischer I
    J Neurosci Res; 2014 May; 92(5):607-18. PubMed ID: 24452691
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transplants of fibroblasts genetically modified to express BDNF promote axonal regeneration from supraspinal neurons following chronic spinal cord injury.
    Jin Y; Fischer I; Tessler A; Houle JD
    Exp Neurol; 2002 Sep; 177(1):265-75. PubMed ID: 12429228
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Surgical techniques influence local environment of injured spinal cord and cause various grafted cell survival and integration.
    Hou S; Saltos TM; Iredia IW; Tom VJ
    J Neurosci Methods; 2018 Jan; 293():144-150. PubMed ID: 28947264
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Delayed transplantation of olfactory ensheathing glia promotes sparing/regeneration of supraspinal axons in the contused adult rat spinal cord.
    Plant GW; Christensen CL; Oudega M; Bunge MB
    J Neurotrauma; 2003 Jan; 20(1):1-16. PubMed ID: 12614584
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Myelination of axons emerging from neural progenitor grafts after spinal cord injury.
    Hunt M; Lu P; Tuszynski MH
    Exp Neurol; 2017 Oct; 296():69-73. PubMed ID: 28698030
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Partial restoration of cardiovascular function by embryonic neural stem cell grafts after complete spinal cord transection.
    Hou S; Tom VJ; Graham L; Lu P; Blesch A
    J Neurosci; 2013 Oct; 33(43):17138-49. PubMed ID: 24155317
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimal location and time for neural stem cell transplantation into transected rat spinal cord.
    Li Y; Zhang WM; Wang TH
    Cell Mol Neurobiol; 2011 Apr; 31(3):407-14. PubMed ID: 21161579
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Schwann cell transplantation improves reticulospinal axon growth and forelimb strength after severe cervical spinal cord contusion.
    Schaal SM; Kitay BM; Cho KS; Lo TP; Barakat DJ; Marcillo AE; Sanchez AR; Andrade CM; Pearse DD
    Cell Transplant; 2007; 16(3):207-28. PubMed ID: 17503734
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Homologous transplantation of neural stem cells to the injured spinal cord of mice.
    Pallini R; Vitiani LR; Bez A; Casalbore P; Facchiano F; Di Giorgi Gerevini V; Falchetti ML; Fernandez E; Maira G; Peschle C; Parati E
    Neurosurgery; 2005 Nov; 57(5):1014-25; discussion 1014-25. PubMed ID: 16284571
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.