These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 24748028)

  • 21. Wavefront Changes during a Sustained Reading Task in Presbyopic Eyes.
    Safarian Baloujeh E; González-Méijome JM
    Sensors (Basel); 2024 Jun; 24(12):. PubMed ID: 38931650
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Enhanced neural function in highly aberrated eyes following perceptual learning with adaptive optics.
    Sabesan R; Barbot A; Yoon G
    Vision Res; 2017 Mar; 132():78-84. PubMed ID: 27836334
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Dual wavefront sensing channel monocular adaptive optics system for accommodation studies.
    Hampson KM; Chin SS; Mallen EA
    Opt Express; 2009 Sep; 17(20):18229-40. PubMed ID: 19907614
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Contrast sensitivity function after correcting residual wavefront aberrations during RGP lens wear.
    Yang B; Liang B; Liu L; Liao M; Li Q; Dai Y; Zhao H; Zhang Y; Zhou Y
    Optom Vis Sci; 2014 Oct; 91(10):1271-7. PubMed ID: 24770353
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Myopic aberrations: impact of centroiding noise in Hartmann Shack wavefront sensing.
    Akondi V; Vohnsen B
    Ophthalmic Physiol Opt; 2013 Jul; 33(4):434-43. PubMed ID: 23786384
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Single-shot quantitative aberration and scattering length measurements in mouse brain tissues using an extended-source Shack-Hartmann wavefront sensor.
    Imperato S; Harms F; Hubert A; Mercier M; Bourdieu L; Fragola A
    Opt Express; 2022 Apr; 30(9):15250-15265. PubMed ID: 35473251
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Measuring ocular aberrations and image quality in peripheral vision with a clinical wavefront aberrometer.
    Shen J; Thibos LN
    Clin Exp Optom; 2009 May; 92(3):212-22. PubMed ID: 19462503
    [TBL] [Abstract][Full Text] [Related]  

  • 28. High-resolution imaging of diabetic retinopathy lesions using an adaptive optics retinal camera.
    Cristescu IE; Ochinciuc R; Balta F; Zagrean L
    Rom J Ophthalmol; 2019; 63(1):29-34. PubMed ID: 31198895
    [No Abstract]   [Full Text] [Related]  

  • 29. Wave aberration of human eyes and new descriptors of image optical quality and visual performance.
    Lombardo M; Lombardo G
    J Cataract Refract Surg; 2010 Feb; 36(2):313-31. PubMed ID: 20152616
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A comparison between subjective refraction and aberrometry-derived refraction in keratoconus patients and control subjects.
    Jinabhai A; O'Donnell C; Radhakrishnan H
    Curr Eye Res; 2010 Aug; 35(8):703-14. PubMed ID: 20673047
    [TBL] [Abstract][Full Text] [Related]  

  • 31. In vivo imaging of human photoreceptor mosaic with wavefront sensorless adaptive optics optical coherence tomography.
    Wong KS; Jian Y; Cua M; Bonora S; Zawadzki RJ; Sarunic MV
    Biomed Opt Express; 2015 Feb; 6(2):580-90. PubMed ID: 25780747
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Age-related changes in corneal and ocular higher-order wavefront aberrations.
    Amano S; Amano Y; Yamagami S; Miyai T; Miyata K; Samejima T; Oshika T
    Am J Ophthalmol; 2004 Jun; 137(6):988-92. PubMed ID: 15183781
    [TBL] [Abstract][Full Text] [Related]  

  • 33. "For Mass Eye and Ear Special Issue" Adaptive Optics in the Evaluation of Diabetic Retinopathy.
    AbdelAl O; Ashraf M; Sampani K; Sun JK
    Semin Ophthalmol; 2019; 34(4):189-197. PubMed ID: 31188056
    [TBL] [Abstract][Full Text] [Related]  

  • 34. High-Resolution Imaging of Parafoveal Cones in Different Stages of Diabetic Retinopathy Using Adaptive Optics Fundus Camera.
    Soliman MK; Sadiq MA; Agarwal A; Sarwar S; Hassan M; Hanout M; Graf F; High R; Do DV; Nguyen QD; Sepah YJ
    PLoS One; 2016; 11(4):e0152788. PubMed ID: 27057752
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Influence of spherical intraocular lens implantation and conventional laser in situ keratomileusis on peripheral ocular aberrations.
    Mathur A; Atchison DA
    J Cataract Refract Surg; 2010 Jul; 36(7):1127-34. PubMed ID: 20610090
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Optical section retinal imaging and wavefront sensing in diabetes.
    Shahidi M; Blair NP; Mori M; Zelkha R
    Optom Vis Sci; 2004 Oct; 81(10):778-84. PubMed ID: 15557852
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Comparison of ocular aberrations measured by a Fourier-based Hartmann-Shack and Zernike-based Tscherning aberrometer before and after laser in situ keratomileusis.
    Sáles CS; Manche EE
    J Cataract Refract Surg; 2015 Sep; 41(9):1820-5. PubMed ID: 26603389
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Pupil tracking with a Hartmann-Shack wavefront sensor.
    Arines J; Prado P; Bará S
    J Biomed Opt; 2010; 15(3):036022. PubMed ID: 20615024
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Visual performance after posterior chamber phakic intraocular lens implantation and wavefront-guided laser in situ keratomileusis for low to moderate myopia.
    Kamiya K; Igarashi A; Shimizu K; Matsumura K; Komatsu M
    Am J Ophthalmol; 2012 Jun; 153(6):1178-86.e1. PubMed ID: 22365084
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Correcting highly aberrated eyes using large-stroke adaptive optics.
    Sabesan R; Ahmad K; Yoon G
    J Refract Surg; 2007 Nov; 23(9):947-52. PubMed ID: 18041252
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.