BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 2474812)

  • 1. Inhibition of acetyl- and butyrylcholinesterase and amylase release from canine pancreas.
    Oguchi Y; Dressel TD; Borner JW; Miller J; Goodale RL
    Pancreas; 1989; 4(4):423-8. PubMed ID: 2474812
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Organophosphate increases the sensitivity of human exocrine pancreas to acetylcholine.
    Kandalaft K; Liu S; Manivel C; Borner JW; Dressel TD; Sutherland DE; Goodale RL
    Pancreas; 1991 Jul; 6(4):398-403. PubMed ID: 1715083
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of the organophosphate iso-OMPA on amylase release by pancreatic lobules of dog, guinea pig, and cat.
    Oguchi Y; Frick TW; Satterberg TL; Dressel TD; Borner JW; Goodale RL
    Pancreas; 1987; 2(6):664-8. PubMed ID: 2449688
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Increased canine pancreatic acinar cell damage after organophosphate and acetylcholine or cholecystokinin.
    Liu S; Oguchi Y; Borner JW; Runge W; Dressel TD; Goodale RL
    Pancreas; 1990 Mar; 5(2):177-82. PubMed ID: 2315293
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cholinesterases and contractility of cat irides. Effect of echothiophate iodide.
    Harris LS; Shimmyo M; Mittag TW
    Arch Ophthalmol; 1973 Jan; 89(1):49-51. PubMed ID: 4684897
    [No Abstract]   [Full Text] [Related]  

  • 6. Importance of aspartate-70 in organophosphate inhibition, oxime re-activation and aging of human butyrylcholinesterase.
    Masson P; Froment MT; Bartels CF; Lockridge O
    Biochem J; 1997 Jul; 325 ( Pt 1)(Pt 1):53-61. PubMed ID: 9224629
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of inactivation of butyrylcholinesterase on steady state and regenerating levels of ganglionic acetylcholinesterase.
    Koelle GB; Koelle WA; Smyrl EG
    J Neurochem; 1977 Feb; 28(2):313-9. PubMed ID: 839215
    [No Abstract]   [Full Text] [Related]  

  • 8. The relationship between innervation and the cholinesterases of the rat atrioventricular node.
    Taylor IM
    J Histochem Cytochem; 1977 Jan; 25(1):21-6. PubMed ID: 833422
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Species- and concentration-dependent differences of acetyl- and butyrylcholinesterase sensitivity to physostigmine and neostigmine.
    Bitzinger DI; Gruber M; Tümmler S; Michels B; Bundscherer A; Hopf S; Trabold B; Graf BM; Zausig YA
    Neuropharmacology; 2016 Oct; 109():1-6. PubMed ID: 26772968
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A suitable method to monitor inhibition of cholinesterase activities in tissues as induced by reversible enzyme inhibitors.
    Thomsen T; Kewitz H; Pleul O
    Enzyme; 1989; 42(4):219-24. PubMed ID: 2698348
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The relationship between cholinesterase activity and brain permeability to barbitone.
    Rosić N; Milosević MP
    Arch Int Pharmacodyn Ther; 1967 Feb; 165(2):302-7. PubMed ID: 6047617
    [No Abstract]   [Full Text] [Related]  

  • 12. Lens organ culture. II. Pharmacologic evaluation.
    Haddad HM; Furman M; Shore B
    Am J Ophthalmol; 1967 Jun; 63(6):1737-43. PubMed ID: 6027350
    [No Abstract]   [Full Text] [Related]  

  • 13. [Organophosphorus compounds as tools for the pharmaco-histochemical study of cholinesterase in the rat striatum].
    Delamanche IS; Mailly P; Bouchaud C
    Arch Anat Microsc Morphol Exp; 1986-1987; 75(3):135-48. PubMed ID: 3631954
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Special properties of cholinesterases in the cerebral cortex of Alzheimer's disease.
    Geula C; Mesulam M
    Brain Res; 1989 Sep; 498(1):185-9. PubMed ID: 2790472
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Degradation of acetylcholine in human airways: role of butyrylcholinesterase.
    Norel X; Angrisani M; Labat C; Gorenne I; Dulmet E; Rossi F; Brink C
    Br J Pharmacol; 1993 Apr; 108(4):914-9. PubMed ID: 8485630
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The role of cholinesterases in rat urinary bladder contractility.
    Nakahara T; Kubota Y; Sakamoto K; Ishii K
    Urol Res; 2003 Jul; 31(3):223-6. PubMed ID: 12736766
    [TBL] [Abstract][Full Text] [Related]  

  • 17. N1phenethyl-norcymserine, a selective butyrylcholinesterase inhibitor, increases acetylcholine release in rat cerebral cortex: a comparison with donepezil and rivastigmine.
    Cerbai F; Giovannini MG; Melani C; Enz A; Pepeu G
    Eur J Pharmacol; 2007 Oct; 572(2-3):142-50. PubMed ID: 17643410
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spontaneous reactivation of organophosphorus-inhibited electroplax cholinesterase in relation to acetylcholine-induced depolarization.
    Dettbarn WD; Bartels E; Hoskin FC; Welsch F
    Biochem Pharmacol; 1970 Dec; 19(12):2949-55. PubMed ID: 5513033
    [No Abstract]   [Full Text] [Related]  

  • 19. Resistance to organophosphorus agent toxicity in transgenic mice expressing the G117H mutant of human butyrylcholinesterase.
    Wang Y; Boeck AT; Duysen EG; Van Keuren M; Saunders TL; Lockridge O
    Toxicol Appl Pharmacol; 2004 May; 196(3):356-66. PubMed ID: 15094306
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cholinesterase activity on Echinogammarus meridionalis (Pinkster) and Atyaephyra desmarestii (Millet): characterisation and in vivo effects of copper and zinc.
    Quintaneiro C; Monteiro M; Soares AM; Ranville J; Nogueira AJ
    Ecotoxicology; 2014 Apr; 23(3):449-58. PubMed ID: 24526590
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.