These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

66 related articles for article (PubMed ID: 24748327)

  • 21. Effects of Chronic Scopolamine Treatment on Cognitive Impairments and Myelin Basic Protein Expression in the Mouse Hippocampus.
    Park JH; Choi HY; Cho JH; Kim IH; Lee TK; Lee JC; Won MH; Chen BH; Shin BN; Ahn JH; Tae HJ; Choi JH; Chung JY; Lee CH; Cho JH; Kang IJ; Kim JD
    J Mol Neurosci; 2016 Aug; 59(4):579-89. PubMed ID: 27343058
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Analysis of gene expression in mouse brain regions after exposure to 1.9 GHz radiofrequency fields.
    McNamee JP; Bellier PV; Konkle AT; Thomas R; Wasoontarajaroen S; Lemay E; Gajda GB
    Int J Radiat Biol; 2016 Jun; 92(6):338-50. PubMed ID: 27028625
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Pathophysiology of microwave-induced traumatic brain injury.
    Igarashi Y; Matsuda Y; Fuse A; Ishiwata T; Naito Z; Yokota H
    Biomed Rep; 2015 Jul; 3(4):468-472. PubMed ID: 26171150
    [TBL] [Abstract][Full Text] [Related]  

  • 24. MicroRNAs: Novel Mechanism Involved in the Pathogenesis of Microwave Exposure on Rats' Hippocampus.
    Zhao L; Sun C; Xiong L; Yang Y; Gao Y; Wang L; Zuo H; Xu X; Dong J; Zhou H; Peng R
    J Mol Neurosci; 2014 Jun; 53(2):222-30. PubMed ID: 24748327
    [TBL] [Abstract][Full Text] [Related]  

  • 25. iTRAQ quantitatively proteomic analysis of the hippocampus in a rat model of accumulative microwave-induced cognitive impairment.
    Wang H; Tan S; Dong J; Zhang J; Yao B; Xu X; Hao Y; Yu C; Zhou H; Zhao L; Peng R
    Environ Sci Pollut Res Int; 2019 Jun; 26(17):17248-17260. PubMed ID: 31012066
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [A aquaporin 4 expression and effects in rat hippocampus after microwave radiation].
    Li X; Hu XJ; Peng RY; Gao YB; Wang SM; Wang LF; Xu XP; Su ZT; Yang GS
    Zhonghua Lao Dong Wei Sheng Zhi Ye Bing Za Zhi; 2009 Sep; 27(9):534-8. PubMed ID: 20137298
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [Effect of microwave irradiation on neurocyte mitochondrial ultrastructure and mtTFA mRNA expression in rats cerebral cortex and hippocampus].
    Xie Y; Jiang HH; Gong QF; Zhang GB; Yu JH; Yu ZP
    Zhonghua Lao Dong Wei Sheng Zhi Ye Bing Za Zhi; 2004 Apr; 22(2):104-7. PubMed ID: 15130438
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Comparison of microRNA expression in hippocampus and the marginal division (MrD) of the neostriatum in rats.
    Shu SY; Qing D; Wang B; Zeng QY; Chen YC; Jin Y; Zeng CC; Bao R
    J Biomed Sci; 2013 Feb; 20(1):9. PubMed ID: 23425148
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Identification of potential miRNA-mRNA regulatory network contributing to pathogenesis of HBV-related HCC.
    Lou W; Liu J; Ding B; Chen D; Xu L; Ding J; Jiang D; Zhou L; Zheng S; Fan W
    J Transl Med; 2019 Jan; 17(1):7. PubMed ID: 30602391
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Impairment of long-term potentiation induction is essential for the disruption of spatial memory after microwave exposure.
    Wang H; Peng R; Zhou H; Wang S; Gao Y; Wang L; Yong Z; Zuo H; Zhao L; Dong J; Xu X; Su Z
    Int J Radiat Biol; 2013 Dec; 89(12):1100-7. PubMed ID: 23786183
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effect of low level microwave radiation exposure on cognitive function and oxidative stress in rats.
    Deshmukh PS; Banerjee BD; Abegaonkar MP; Megha K; Ahmed RS; Tripathi AK; Mediratta PK
    Indian J Biochem Biophys; 2013 Apr; 50(2):114-9. PubMed ID: 23720885
    [TBL] [Abstract][Full Text] [Related]  

  • 32. MicroRNAs as effectors of brain function.
    Saugstad JA
    Stroke; 2013 Jun; 44(6 Suppl 1):S17-9. PubMed ID: 23709715
    [No Abstract]   [Full Text] [Related]  

  • 33. Cell phone radiation exposure on brain and associated biological systems.
    Kesari KK; Siddiqui MH; Meena R; Verma HN; Kumar S
    Indian J Exp Biol; 2013 Mar; 51(3):187-200. PubMed ID: 23678539
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Advanced glycation end-products disrupt the blood-brain barrier by stimulating the release of transforming growth factor-β by pericytes and vascular endothelial growth factor and matrix metalloproteinase-2 by endothelial cells in vitro.
    Shimizu F; Sano Y; Tominaga O; Maeda T; Abe MA; Kanda T
    Neurobiol Aging; 2013 Jul; 34(7):1902-12. PubMed ID: 23428182
    [TBL] [Abstract][Full Text] [Related]  

  • 35.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 36.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 37.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 38.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 39.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 40.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.