These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 2474836)

  • 1. Photooxidation of cell membranes using eosin derivatives that locate in lipid or protein to study the role of diffusible intermediates.
    Pooler JP
    Photochem Photobiol; 1989 Jul; 50(1):55-68. PubMed ID: 2474836
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Labeling of human erythrocyte membranes with eosin probes used for protein diffusion measurements: inhibition of anion transport and photo-oxidative inactivation of acetylcholinesterase.
    Nigg E; Kessler M; Cherry RJ
    Biochim Biophys Acta; 1979 Jan; 550(2):328-40. PubMed ID: 215229
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quenching of singlet oxygen by human red cell ghosts.
    Kanofsky JR
    Photochem Photobiol; 1991 Jan; 53(1):93-9. PubMed ID: 2027911
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phthalocyanine-sensitized lipid peroxidation in cell membranes: use of cholesterol and azide as probes of primary photochemistry.
    Bachowski GJ; Ben-Hur E; Girotti AW
    J Photochem Photobiol B; 1991 Jun; 9(3-4):307-21. PubMed ID: 1919874
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lipid photooxidation in erythrocyte ghosts: sensitization of the membranes toward ascorbate- and superoxide-induced peroxidation and lysis.
    Girotti AW; Thomas JP; Jordan JE
    Arch Biochem Biophys; 1985 Jan; 236(1):238-51. PubMed ID: 2981506
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Relation between erythrocyte photodamage and the intensity of ultraviolet radiation].
    Roshchupkin DI; Lordkipanidze AT
    Biofizika; 1984; 29(1):155-6. PubMed ID: 6713003
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of tocopherol on photooxidation rate of human erythrocyte membrane in vitro.
    Bland J; Canfield W; Kennedy T; Vincent J; Wells R
    Physiol Chem Phys; 1978; 10(2):145-52. PubMed ID: 724810
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Effect of erythrocyte membrane structure on the dose dependence of photohemolysis].
    Bolodon VN; Krut'ko IuV; Rozin VV; Chernitskiĭ EA
    Biofizika; 1996; 41(2):413-6. PubMed ID: 8723659
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Photomodification of biological membranes with emphasis on singlet oxygen mechanisms.
    Valenzeno DP
    Photochem Photobiol; 1987 Jul; 46(1):147-60. PubMed ID: 3303072
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 5-iodonaphthyl-1-azide labeling of plasma membrane proteins adjacent to specific sites via energy transfer.
    Meiklejohn BI; Rahman NA; Roess DA; Barisas BG
    Biochim Biophys Acta; 1997 Mar; 1324(2):320-32. PubMed ID: 9092718
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The amino-terminal peptide of HIV-1 glycoprotein 41 interacts with human erythrocyte membranes: peptide conformation, orientation and aggregation.
    Gordon LM; Curtain CC; Zhong YC; Kirkpatrick A; Mobley PW; Waring AJ
    Biochim Biophys Acta; 1992 Aug; 1139(4):257-74. PubMed ID: 1355364
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lipid peroxidation in erythrocyte membranes: cholesterol product analysis in photosensitized and xanthine oxidase-catalyzed reactions.
    Girotti AW; Bachowski GJ; Jordan JE
    Lipids; 1987 Jun; 22(6):401-8. PubMed ID: 3112484
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Formation and photosensitizing activity of protein tryptophanile photochemical breakdown products in isolated erythrocyte membranes].
    Vorobeĭ AV; Pinchuk SV
    Biofizika; 1995; 40(2):342-6. PubMed ID: 7578340
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Photosensitization by 2-chloro-3,11-tridecadiene-5,7,9-triyn-1-ol: damage to erythrocyte membranes, Escherichia coli, and DNA.
    Kagan J; Wang TP; Kagan IA; Tuveson RW; Wang GR; Lam J
    Photochem Photobiol; 1992 Jan; 55(1):63-73. PubMed ID: 1603851
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electron spin resonance evidence of the generation of superoxide anion, hydroxyl radical and singlet oxygen during the photohemolysis of human erythrocytes with bacteriochlorin a.
    Hoebeke M; Schuitmaker HJ; Jannink LE; Dubbelman TM; Jakobs A; Van de Vorst A
    Photochem Photobiol; 1997 Oct; 66(4):502-8. PubMed ID: 9337622
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bleaching of membrane-bound merocyanine 540 in conjunction with free radical-mediated lipid peroxidation.
    Pintar TJ; Lin F; Girotti AW
    Free Radic Biol Med; 1994 May; 16(5):603-12. PubMed ID: 8026803
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Photodynamic action of merocyanine 540 on erythrocyte membranes: structural perturbation of lipid and protein constituents.
    Feix JB; Bachowski GJ; Girotti AW
    Biochim Biophys Acta; 1991 Sep; 1075(1):28-35. PubMed ID: 1654108
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Photolysis and membrane lipid peroxidation of human erythrocytes by m-chloroperbenzoic acid.
    Abou-Seif MA; Elgendy EM
    Clin Chim Acta; 1998 Sep; 277(1):1-11. PubMed ID: 9776041
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hypericin photosensitization in aqueous model systems.
    Senthil V; Jones LR; Senthil K; Grossweiner LI
    Photochem Photobiol; 1994 Jan; 59(1):40-7. PubMed ID: 8127939
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rotational diffusion of band 3 in the red cell membrane: measurements using triplet probes.
    Cherry RJ; Nigg E
    Prog Clin Biol Res; 1979; 30():475-81. PubMed ID: 93746
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.