These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

217 related articles for article (PubMed ID: 24748545)

  • 1. Activation of frontoparietal attention networks by non-predictive gaze and arrow cues.
    Joseph RM; Fricker Z; Keehn B
    Soc Cogn Affect Neurosci; 2015 Feb; 10(2):294-301. PubMed ID: 24748545
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Differential activation of frontoparietal attention networks by social and symbolic spatial cues.
    Engell AD; Nummenmaa L; Oosterhof NN; Henson RN; Haxby JV; Calder AJ
    Soc Cogn Affect Neurosci; 2010 Dec; 5(4):432-40. PubMed ID: 20304864
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Automatic attention orienting by social and symbolic cues activates different neural networks: an fMRI study.
    Hietanen JK; Nummenmaa L; Nyman MJ; Parkkola R; Hämäläinen H
    Neuroimage; 2006 Oct; 33(1):406-13. PubMed ID: 16949306
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The neural correlates of social attention: automatic orienting to social and nonsocial cues.
    Greene DJ; Mooshagian E; Kaplan JT; Zaidel E; Iacoboni M
    Psychol Res; 2009 Jul; 73(4):499-511. PubMed ID: 19350270
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Visuospatial attention shifts by gaze and arrow cues: an ERP study.
    Hietanen JK; Leppänen JM; Nummenmaa L; Astikainen P
    Brain Res; 2008 Jun; 1215():123-36. PubMed ID: 18485332
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Right temporal-parietal junction engagement during spatial reorienting does not depend on strategic attention control.
    Natale E; Marzi CA; Macaluso E
    Neuropsychologia; 2010 Mar; 48(4):1160-4. PubMed ID: 19932706
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Distinct roles of the intraparietal sulcus and temporoparietal junction in attentional capture from distractor features: An individual differences approach.
    Painter DR; Dux PE; Mattingley JB
    Neuropsychologia; 2015 Jul; 74():50-62. PubMed ID: 25724234
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Deconstructing the architecture of dorsal and ventral attention systems with dynamic causal modeling.
    Vossel S; Weidner R; Driver J; Friston KJ; Fink GR
    J Neurosci; 2012 Aug; 32(31):10637-48. PubMed ID: 22855813
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Neural basis of endogenous and exogenous spatial orienting. A functional MRI study.
    Rosen AC; Rao SM; Caffarra P; Scaglioni A; Bobholz JA; Woodley SJ; Hammeke TA; Cunningham JM; Prieto TE; Binder JR
    J Cogn Neurosci; 1999 Mar; 11(2):135-52. PubMed ID: 10198130
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Neural correlates of the spatial and expectancy components of endogenous and stimulus-driven orienting of attention in the Posner task.
    Doricchi F; Macci E; Silvetti M; Macaluso E
    Cereb Cortex; 2010 Jul; 20(7):1574-85. PubMed ID: 19846472
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Activation during endogenous orienting of visual attention using symbolic pointers in the human parietal and frontal cortices: a functional magnetic resonance imaging study.
    Kato C; Matsuo K; Matsuzawa M; Moriya T; Glover GH; Nakai T
    Neurosci Lett; 2001 Nov; 314(1-2):5-8. PubMed ID: 11698133
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cue validity modulates the neural correlates of covert endogenous orienting of attention in parietal and frontal cortex.
    Vossel S; Thiel CM; Fink GR
    Neuroimage; 2006 Sep; 32(3):1257-64. PubMed ID: 16846742
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dorsal and ventral attention systems underlie social and symbolic cueing.
    Callejas A; Shulman GL; Corbetta M
    J Cogn Neurosci; 2014 Jan; 26(1):63-80. PubMed ID: 23937692
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Both dorsal and ventral attention network nodes are implicated in exogenously driven visuospatial anticipation.
    Ahrens MM; Veniero D; Freund IM; Harvey M; Thut G
    Cortex; 2019 Aug; 117():168-181. PubMed ID: 30981955
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effective connectivity during feature-based attentional capture: evidence against the attentional reorienting hypothesis of TPJ.
    DiQuattro NE; Sawaki R; Geng JJ
    Cereb Cortex; 2014 Dec; 24(12):3131-41. PubMed ID: 23825319
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cerebral correlates of alerting, orienting and reorienting of visuospatial attention: an event-related fMRI study.
    Thiel CM; Zilles K; Fink GR
    Neuroimage; 2004 Jan; 21(1):318-28. PubMed ID: 14741670
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Neural mechanisms of visual attention: object-based selection of a region in space.
    Arrington CM; Carr TH; Mayer AR; Rao SM
    J Cogn Neurosci; 2000; 12 Suppl 2():106-17. PubMed ID: 11506651
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Neuronal interactions in areas of spatial attention reflect avoidance of disgust, but orienting to danger.
    Zimmer U; Höfler M; Koschutnig K; Ischebeck A
    Neuroimage; 2016 Jul; 134():94-104. PubMed ID: 27039145
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spatio-temporal localisation of attentional orienting to gaze and peripheral cues.
    Nagata Y; Bayless SJ; Mills T; Taylor MJ
    Brain Res; 2012 Feb; 1439():44-53. PubMed ID: 22277356
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Orienting attention in time: behavioural and neuroanatomical distinction between exogenous and endogenous shifts.
    Coull JT; Frith CD; Büchel C; Nobre AC
    Neuropsychologia; 2000; 38(6):808-19. PubMed ID: 10689056
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.