These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
148 related articles for article (PubMed ID: 24748687)
1. Single event time series analysis in a binary karst catchment evaluated using a groundwater model (Lurbach system, Austria). Mayaud C; Wagner T; Benischke R; Birk S J Hydrol (Amst); 2014 Apr; 511(100):628-639. PubMed ID: 24748687 [TBL] [Abstract][Full Text] [Related]
2. Understanding changes in the hydrological behaviour within a karst aquifer (Lurbach system, Austria). Mayaud C; Wagner T; Benischke R; Birk S Carbonates Evaporites; 2016; 31(4):357-365. PubMed ID: 28077913 [TBL] [Abstract][Full Text] [Related]
3. Numerical study of groundwater flow cycling controlled by seawater/freshwater interaction in a coastal karst aquifer through conduit network using CFPv2. Xu Z; Hu BX; Davis H; Kish S J Contam Hydrol; 2015 Nov; 182():131-45. PubMed ID: 26387032 [TBL] [Abstract][Full Text] [Related]
4. Studying the flow dynamics of a karst aquifer system with an equivalent porous medium model. Abusaada M; Sauter M Ground Water; 2013; 51(4):641-50. PubMed ID: 23039080 [TBL] [Abstract][Full Text] [Related]
5. Tracking flowpaths in a complex karst system through tracer test and hydrogeochemical monitoring: Implications for groundwater protection (Gran Sasso, Italy). Lorenzi V; Banzato F; Barberio MD; Goeppert N; Goldscheider N; Gori F; Lacchini A; Manetta M; Medici G; Rusi S; Petitta M Heliyon; 2024 Jan; 10(2):e24663. PubMed ID: 38298644 [TBL] [Abstract][Full Text] [Related]
6. Simulation of Regional Karst Aquifer System and Assessment of Groundwater Resources in Manatí-Vega Baja, Puerto Rico. Maihemuti B; Ghasemizadeh R; Yu X; Padilla I; Alshawabkeh AN J Water Resour Prot; 2015 Aug; 7(12):909-922. PubMed ID: 31131072 [TBL] [Abstract][Full Text] [Related]
7. Process-based monitoring and modeling of Karst springs - Linking intrinsic to specific vulnerability. Epting J; Page RM; Auckenthaler A; Huggenberger P Sci Total Environ; 2018 Jun; 625():403-415. PubMed ID: 29289788 [TBL] [Abstract][Full Text] [Related]
8. Modeling the usefulness of spatial correlation analysis on karst systems. Budge TJ; Sharp JM Ground Water; 2009; 47(3):427-37. PubMed ID: 19462525 [TBL] [Abstract][Full Text] [Related]
9. Management and research strategies of karst aquifers in Greece: Literature overview and exemplification based on hydrodynamic modelling and vulnerability assessment of a strategic karst aquifer. Kazakis N; Chalikakis K; Mazzilli N; Ollivier C; Manakos A; Voudouris K Sci Total Environ; 2018 Dec; 643():592-609. PubMed ID: 29957427 [TBL] [Abstract][Full Text] [Related]
10. Contribution of isotopic research techniques to characterize high-mountain-Mediterranean karst aquifers: The Port del Comte (Eastern Pyrenees) aquifer. Herms I; Jódar J; Soler A; Vadillo I; Lambán LJ; Martos-Rosillo S; Núñez JA; Arnó G; Jorge J Sci Total Environ; 2019 Mar; 656():209-230. PubMed ID: 30504022 [TBL] [Abstract][Full Text] [Related]
11. Flow Cytometry and Fecal Indicator Bacteria Analyses for Fingerprinting Microbial Pollution in Karst Aquifer Systems. Vucinic L; O'Connell D; Teixeira R; Coxon C; Gill L Water Resour Res; 2022 May; 58(5):e2021WR029840. PubMed ID: 35859924 [TBL] [Abstract][Full Text] [Related]
12. Real-time karst groundwater monitoring and bacterial analysis as early warning strategies for drinking water supply contamination. Fernández-Ortega J; Barberá JA; Andreo B Sci Total Environ; 2024 Feb; 912():169539. PubMed ID: 38141988 [TBL] [Abstract][Full Text] [Related]
13. An evaluation of semidistributed-pipe-network and distributed-finite-difference models to simulate karst systems. Gill LW; Schuler P; Duran L; Morrissey P; Johnston PM Hydrogeol J; 2021; 29(1):259-279. PubMed ID: 33603565 [TBL] [Abstract][Full Text] [Related]
14. The snow and rainfall impact on the Verde spring behavior: A statistical approach on hydrodynamic and hydrochemical daily time-series. Chiaudani A; Di Curzio D; Rusi S Sci Total Environ; 2019 Nov; 689():481-493. PubMed ID: 31279195 [TBL] [Abstract][Full Text] [Related]
15. Hydrological response of karst stream to precipitation variation recognized through the quantitative separation of runoff components. Wang F; Chen H; Lian J; Fu Z; Nie Y Sci Total Environ; 2020 Dec; 748():142483. PubMed ID: 33113671 [TBL] [Abstract][Full Text] [Related]
16. Experimental and modeling evidence of kilometer-scale anomalous tracer transport in an alpine karst aquifer. Goeppert N; Goldscheider N; Berkowitz B Water Res; 2020 Jul; 178():115755. PubMed ID: 32348930 [TBL] [Abstract][Full Text] [Related]
17. Source, variability, and transformation of nitrate in a regional karst aquifer: Edwards aquifer, central Texas. Musgrove M; Opsahl SP; Mahler BJ; Herrington C; Sample TL; Banta JR Sci Total Environ; 2016 Oct; 568():457-469. PubMed ID: 27314899 [TBL] [Abstract][Full Text] [Related]
18. Integrating soil water and tracer balances, numerical modelling and GIS tools to estimate regional groundwater recharge: Application to the Alcadozo Aquifer System (SE Spain). Hornero J; Manzano M; Ortega L; Custodio E Sci Total Environ; 2016 Oct; 568():415-432. PubMed ID: 27310533 [TBL] [Abstract][Full Text] [Related]
19. Using Wavelet Coherence to Characterize Surface Water Infiltration into a Low-Lying Karst Aquifer. Schuler P; Cantoni È; Duran L; Johnston P; Gill L Ground Water; 2021 Jan; 59(1):71-79. PubMed ID: 32388858 [TBL] [Abstract][Full Text] [Related]
20. Responses of Spring Discharge to Different Rainfall Events for Single-Conduit Karst Aquifers in Western Hunan Province, China. Chang W; Wan J; Tan J; Wang Z; Jiang C; Huang K Int J Environ Res Public Health; 2021 May; 18(11):. PubMed ID: 34072196 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]