These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
167 related articles for article (PubMed ID: 24748700)
1. Avoiding bias due to perfect prediction in multiple imputation of incomplete categorical variables. White IR; Daniel R; Royston P Comput Stat Data Anal; 2010 Oct; 54(10):2267-2275. PubMed ID: 24748700 [TBL] [Abstract][Full Text] [Related]
2. Practical strategies for handling breakdown of multiple imputation procedures. Nguyen CD; Carlin JB; Lee KJ Emerg Themes Epidemiol; 2021 Apr; 18(1):5. PubMed ID: 33794933 [TBL] [Abstract][Full Text] [Related]
3. A comparison of incomplete-data methods for categorical data. van der Palm DW; van der Ark LA; Vermunt JK Stat Methods Med Res; 2016 Apr; 25(2):754-74. PubMed ID: 23166159 [TBL] [Abstract][Full Text] [Related]
4. Multiple imputation by chained equations for systematically and sporadically missing multilevel data. Resche-Rigon M; White IR Stat Methods Med Res; 2018 Jun; 27(6):1634-1649. PubMed ID: 27647809 [TBL] [Abstract][Full Text] [Related]
5. [Multiple imputation of missing at random data: General points and presentation of a Monte-Carlo method]. Cottrell G; Cot M; Mary JY Rev Epidemiol Sante Publique; 2009 Oct; 57(5):361-72. PubMed ID: 19674855 [TBL] [Abstract][Full Text] [Related]
6. Multiple imputation for missing data: fully conditional specification versus multivariate normal imputation. Lee KJ; Carlin JB Am J Epidemiol; 2010 Mar; 171(5):624-32. PubMed ID: 20106935 [TBL] [Abstract][Full Text] [Related]
7. Missing data and imputation: a practical illustration in a prognostic study on low back pain. Vergouw D; Heymans MW; van der Windt DA; Foster NE; Dunn KM; van der Horst HE; de Vet HC J Manipulative Physiol Ther; 2012 Jul; 35(6):464-71. PubMed ID: 22964020 [TBL] [Abstract][Full Text] [Related]
8. A fully conditional specification approach to multilevel imputation of categorical and continuous variables. Enders CK; Keller BT; Levy R Psychol Methods; 2018 Jun; 23(2):298-317. PubMed ID: 28557466 [TBL] [Abstract][Full Text] [Related]
9. Multiple imputation for handling missing outcome data when estimating the relative risk. Sullivan TR; Lee KJ; Ryan P; Salter AB BMC Med Res Methodol; 2017 Sep; 17(1):134. PubMed ID: 28877666 [TBL] [Abstract][Full Text] [Related]
10. Hierarchical imputation of systematically and sporadically missing data: An approximate Bayesian approach using chained equations. Jolani S Biom J; 2018 Mar; 60(2):333-351. PubMed ID: 28990686 [TBL] [Abstract][Full Text] [Related]
11. A Comparison of Methods for Creating Multiple Imputations of Nominal Variables. Lang KM; Wu W Multivariate Behav Res; 2017; 52(3):290-304. PubMed ID: 28266876 [TBL] [Abstract][Full Text] [Related]
12. Imputing missing time-dependent covariate values for the discrete time Cox model. Murad H; Dankner R; Berlin A; Olmer L; Freedman LS Stat Methods Med Res; 2020 Aug; 29(8):2074-2086. PubMed ID: 31680633 [TBL] [Abstract][Full Text] [Related]
13. Multiple imputation methods for handling missing values in a longitudinal categorical variable with restrictions on transitions over time: a simulation study. De Silva AP; Moreno-Betancur M; De Livera AM; Lee KJ; Simpson JA BMC Med Res Methodol; 2019 Jan; 19(1):14. PubMed ID: 30630434 [TBL] [Abstract][Full Text] [Related]
14. Bias and Precision of the "Multiple Imputation, Then Deletion" Method for Dealing With Missing Outcome Data. Sullivan TR; Salter AB; Ryan P; Lee KJ Am J Epidemiol; 2015 Sep; 182(6):528-34. PubMed ID: 26337075 [TBL] [Abstract][Full Text] [Related]
15. On inference of control-based imputation for analysis of repeated binary outcomes with missing data. Gao F; Liu G; Zeng D; Diao G; Heyse JF; Ibrahim JG J Biopharm Stat; 2017; 27(3):358-372. PubMed ID: 28287873 [TBL] [Abstract][Full Text] [Related]
16. Dealing with missing covariates in epidemiologic studies: a comparison between multiple imputation and a full Bayesian approach. Erler NS; Rizopoulos D; Rosmalen Jv; Jaddoe VW; Franco OH; Lesaffre EM Stat Med; 2016 Jul; 35(17):2955-74. PubMed ID: 27042954 [TBL] [Abstract][Full Text] [Related]
17. Cumulative sojourn time in longitudinal studies: a sequential imputation method to handle missing health state data due to dropout. Li X; Liu J; Duan N; Jiang H; Girgis R; Lieberman J Stat Med; 2014 May; 33(12):2030-47. PubMed ID: 24918241 [TBL] [Abstract][Full Text] [Related]
18. Does pattern mixture modelling reduce bias due to informative attrition compared to fitting a mixed effects model to the available cases or data imputed using multiple imputation?: a simulation study. Welch CA; Sabia S; Brunner E; Kivimäki M; Shipley MJ BMC Med Res Methodol; 2018 Aug; 18(1):89. PubMed ID: 30157752 [TBL] [Abstract][Full Text] [Related]
19. Multiple imputation as a flexible tool for missing data handling in clinical research. Enders CK Behav Res Ther; 2017 Nov; 98():4-18. PubMed ID: 27890222 [TBL] [Abstract][Full Text] [Related]
20. Multiple Imputation for General Missing Data Patterns in the Presence of High-dimensional Data. Deng Y; Chang C; Ido MS; Long Q Sci Rep; 2016 Feb; 6():21689. PubMed ID: 26868061 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]