BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 24749395)

  • 1. Pegylation increases platelet biocompatibility of gold nanoparticles.
    Santos-Martinez MJ; Rahme K; Corbalan JJ; Faulkner C; Holmes JD; Tajber L; Medina C; Radomski MW
    J Biomed Nanotechnol; 2014 Jun; 10(6):1004-15. PubMed ID: 24749395
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of functionalized silver nanoparticles on aggregation of human blood platelets.
    Hajtuch J; Hante N; Tomczyk E; Wojcik M; Radomski MW; Santos-Martinez MJ; Inkielewicz-Stepniak I
    Int J Nanomedicine; 2019; 14():7399-7417. PubMed ID: 31571858
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Antiplatelet effect of differentially charged PEGylated lipid-polymer nanoparticles.
    Fuentes E; Yameen B; Bong SJ; Salvador-Morales C; Palomo I; Vilos C
    Nanomedicine; 2017 Apr; 13(3):1089-1094. PubMed ID: 27789259
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The use of quartz crystal microbalance with dissipation (QCM-D) for studying nanoparticle-induced platelet aggregation.
    Santos-Martinez MJ; Inkielewicz-Stepniak I; Medina C; Rahme K; D'Arcy DM; Fox D; Holmes JD; Zhang H; Radomski MW
    Int J Nanomedicine; 2012; 7():243-55. PubMed ID: 22275839
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of gold nanoparticles coated with plasma components on ADP-induced platelet aggregation.
    Aseychev AV; Azizova OA; Beckman EM; Dudnik LB; Sergienko VI
    Bull Exp Biol Med; 2013 Sep; 155(5):685-8. PubMed ID: 24288740
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biodistribution of colloidal gold nanoparticles after intravenous injection: Effects of PEGylation at the same particle size.
    Takeuchi I; Onaka H; Makino K
    Biomed Mater Eng; 2018; 29(2):205-215. PubMed ID: 29457594
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Complement Activation by PEGylated Gold Nanoparticles.
    Quach QH; Kong RLX; Kah JCY
    Bioconjug Chem; 2018 Apr; 29(4):976-981. PubMed ID: 29431995
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of the physicochemical properties and the biocompatibility of polyethylene glycol-conjugated gold nanoparticles: A formulation strategy for siRNA delivery.
    Rahme K; Guo J; Holmes JD; O'Driscoll CM
    Colloids Surf B Biointerfaces; 2015 Nov; 135():604-612. PubMed ID: 26322474
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pegylated gold nanoparticles induce apoptosis in human chronic myeloid leukemia cells.
    Huang YC; Yang YC; Yang KC; Shieh HR; Wang TY; Hwu Y; Chen YJ
    Biomed Res Int; 2014; 2014():182353. PubMed ID: 24790990
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Surface tunability of nanoparticles in modulating platelet functions.
    Deb S; Raja SO; Dasgupta AK; Sarkar R; Chattopadhyay AP; Chaudhuri U; Guha P; Sardar P
    Blood Cells Mol Dis; 2012 Jan; 48(1):36-44. PubMed ID: 22033068
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pharmacological characterization of nanoparticle-induced platelet microaggregation using quartz crystal microbalance with dissipation: comparison with light aggregometry.
    Santos-Martinez MJ; Tomaszewski KA; Medina C; Bazou D; Gilmer JF; Radomski MW
    Int J Nanomedicine; 2015; 10():5107-19. PubMed ID: 26316743
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of PEGylation on the biological properties of cationic carbosilane dendronized gold nanoparticles.
    Barrios-Gumiel A; Sánchez-Nieves J; Pedziwiatr-Werbicka E; Abashkin V; Shcharbina N; Shcharbin D; Glińska S; Ciepluch K; Kuc-Ciepluch D; Lach D; Bryszewska M; Gómez R; de la Mata FJ
    Int J Pharm; 2020 Jan; 573():118867. PubMed ID: 31765788
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Critical parameters in the pegylation of gold nanoshells for biomedical applications: an in vitro macrophage study.
    Kah JC; Wong KY; Neoh KG; Song JH; Fu JW; Mhaisalkar S; Olivo M; Sheppard CJ
    J Drug Target; 2009 Apr; 17(3):181-93. PubMed ID: 19016072
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Completely dispersible PEGylated gold nanoparticles under physiological conditions: modification of gold nanoparticles with precisely controlled PEG-b-polyamine.
    Miyamoto D; Oishi M; Kojima K; Yoshimoto K; Nagasaki Y
    Langmuir; 2008 May; 24(9):5010-7. PubMed ID: 18386943
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Use of gold nanoparticles as crosslink agent to form chitosan nanocapsules: study of the direct interaction in aqueous solutions.
    Prado-Gotor R; López-Pérez G; Martín MJ; Cabrera-Escribano F; Franconetti A
    J Inorg Biochem; 2014 Jun; 135():77-85. PubMed ID: 24681548
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Blood compatibility of cetyl alcohol/polysorbate-based nanoparticles.
    Koziara JM; Oh JJ; Akers WS; Ferraris SP; Mumper RJ
    Pharm Res; 2005 Nov; 22(11):1821-8. PubMed ID: 16132346
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantification of monodisperse and biocompatible gold nanoparticles by single-particle ICP-MS.
    Frickenstein AN; Mukherjee S; Harcourt T; He Y; Sheth V; Wang L; Malik Z; Wilhelm S
    Anal Bioanal Chem; 2023 Jul; 415(18):4353-4366. PubMed ID: 36670192
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Temperature-responsive polymer-gold nanocomposites as intelligent therapeutic systems.
    Owens DE; Eby JK; Jian Y; Peppas NA
    J Biomed Mater Res A; 2007 Dec; 83(3):692-5. PubMed ID: 17530631
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nanoparticle size-specific actin rearrangement and barrier dysfunction of endothelial cells.
    Liu Y; Rogel N; Harada K; Jarett L; Maiorana CH; German GK; Mahler GJ; Doiron AL
    Nanotoxicology; 2017 Sep; 11(7):846-856. PubMed ID: 28885066
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gold nanoparticles and a microscopic view of platelets: a preliminary observation.
    Wiwanitkit V; Sereemaspun A; Rojanathanes R
    Cardiovasc J Afr; 2009; 20(2):141-2. PubMed ID: 19421652
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.