These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

308 related articles for article (PubMed ID: 24749417)

  • 1. Nitrogen-doped graphene materials for supercapacitor applications.
    Lu Y; Huang Y; Zhang M; Chen Y
    J Nanosci Nanotechnol; 2014 Feb; 14(2):1134-44. PubMed ID: 24749417
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Generation of B-doped graphene nanoplatelets using a solution process and their supercapacitor applications.
    Han J; Zhang LL; Lee S; Oh J; Lee KS; Potts JR; Ji J; Zhao X; Ruoff RS; Park S
    ACS Nano; 2013 Jan; 7(1):19-26. PubMed ID: 23244292
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The role of nanomaterials in redox-based supercapacitors for next generation energy storage devices.
    Zhao X; Sánchez BM; Dobson PJ; Grant PS
    Nanoscale; 2011 Mar; 3(3):839-55. PubMed ID: 21253650
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthesis of nitrogen-doped porous carbon nanofibers as an efficient electrode material for supercapacitors.
    Chen LF; Zhang XD; Liang HW; Kong M; Guan QF; Chen P; Wu ZY; Yu SH
    ACS Nano; 2012 Aug; 6(8):7092-102. PubMed ID: 22769051
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Freestanding three-dimensional graphene/MnO2 composite networks as ultralight and flexible supercapacitor electrodes.
    He Y; Chen W; Li X; Zhang Z; Fu J; Zhao C; Xie E
    ACS Nano; 2013 Jan; 7(1):174-82. PubMed ID: 23249211
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An overview of the applications of graphene-based materials in supercapacitors.
    Huang Y; Liang J; Chen Y
    Small; 2012 Jun; 8(12):1805-34. PubMed ID: 22514114
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The role of graphene for electrochemical energy storage.
    Raccichini R; Varzi A; Passerini S; Scrosati B
    Nat Mater; 2015 Mar; 14(3):271-9. PubMed ID: 25532074
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Graphene synthesis: relationship to applications.
    Edwards RS; Coleman KS
    Nanoscale; 2013 Jan; 5(1):38-51. PubMed ID: 23160190
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthesis of ultrathin nitrogen-doped graphitic carbon nanocages as advanced electrode materials for supercapacitor.
    Tan Y; Xu C; Chen G; Liu Z; Ma M; Xie Q; Zheng N; Yao S
    ACS Appl Mater Interfaces; 2013 Mar; 5(6):2241-8. PubMed ID: 23425031
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recent advances in the efficient reduction of graphene oxide and its application as energy storage electrode materials.
    Kuila T; Mishra AK; Khanra P; Kim NH; Lee JH
    Nanoscale; 2013 Jan; 5(1):52-71. PubMed ID: 23179249
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transfer of large-area graphene films for high-performance transparent conductive electrodes.
    Li X; Zhu Y; Cai W; Borysiak M; Han B; Chen D; Piner RD; Colombo L; Ruoff RS
    Nano Lett; 2009 Dec; 9(12):4359-63. PubMed ID: 19845330
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Graphene enhances Li storage capacity of porous single-crystalline silicon nanowires.
    Wang XL; Han WQ
    ACS Appl Mater Interfaces; 2010 Dec; 2(12):3709-13. PubMed ID: 21114292
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Shape-Tailorable Graphene-Based Ultra-High-Rate Supercapacitor for Wearable Electronics.
    Xie B; Yang C; Zhang Z; Zou P; Lin Z; Shi G; Yang Q; Kang F; Wong CP
    ACS Nano; 2015 Jun; 9(6):5636-45. PubMed ID: 25938988
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Polyaniline nanowire array encapsulated in titania nanotubes as a superior electrode for supercapacitors.
    Xie K; Li J; Lai Y; Zhang Z; Liu Y; Zhang G; Huang H
    Nanoscale; 2011 May; 3(5):2202-7. PubMed ID: 21455534
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nanocellulose-graphene composites: A promising nanomaterial for flexible supercapacitors.
    Xing J; Tao P; Wu Z; Xing C; Liao X; Nie S
    Carbohydr Polym; 2019 Mar; 207():447-459. PubMed ID: 30600028
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Surface design and engineering of hierarchical hybrid nanostructures for asymmetric supercapacitors with improved electrochemical performance.
    Achilleos DS; Hatton TA
    J Colloid Interface Sci; 2015 Jun; 447():282-301. PubMed ID: 25711524
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ultrathin planar graphene supercapacitors.
    Yoo JJ; Balakrishnan K; Huang J; Meunier V; Sumpter BG; Srivastava A; Conway M; Reddy AL; Yu J; Vajtai R; Ajayan PM
    Nano Lett; 2011 Apr; 11(4):1423-7. PubMed ID: 21381713
    [TBL] [Abstract][Full Text] [Related]  

  • 18. On the configuration of supercapacitors for maximizing electrochemical performance.
    Zhang J; Zhao XS
    ChemSusChem; 2012 May; 5(5):818-41. PubMed ID: 22550045
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Graphene doping methods and device applications.
    Oh JS; Kim KN; Yeom GY
    J Nanosci Nanotechnol; 2014 Feb; 14(2):1120-33. PubMed ID: 24749416
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Graphene anchored with co(3)o(4) nanoparticles as anode of lithium ion batteries with enhanced reversible capacity and cyclic performance.
    Wu ZS; Ren W; Wen L; Gao L; Zhao J; Chen Z; Zhou G; Li F; Cheng HM
    ACS Nano; 2010 Jun; 4(6):3187-94. PubMed ID: 20455594
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.