These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

217 related articles for article (PubMed ID: 24749460)

  • 1. Nanotechnology-based water treatment strategies.
    Kumar S; Ahlawat W; Bhanjana G; Heydarifard S; Nazhad MM; Dilbaghi N
    J Nanosci Nanotechnol; 2014 Feb; 14(2):1838-58. PubMed ID: 24749460
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Applications of nanotechnology in wastewater treatment--a review.
    Bora T; Dutta J
    J Nanosci Nanotechnol; 2014 Jan; 14(1):613-26. PubMed ID: 24730286
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The application of microfiltration-reverse osmosis/nanofiltration to trace organics removal for municipal wastewater reuse.
    Garcia N; Moreno J; Cartmell E; Rodriguez-Roda I; Judd S
    Environ Technol; 2013; 34(21-24):3183-9. PubMed ID: 24617078
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Wastewater polishing using membrane technology: a review of existing installations.
    Raffin M; Germain E; Judd S
    Environ Technol; 2013; 34(5-8):617-27. PubMed ID: 23837311
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Removal of water contaminants by iron oxide nanomaterials.
    Saharan P; Chaudhary GR; Mehta SK; Umar A
    J Nanosci Nanotechnol; 2014 Jan; 14(1):627-43. PubMed ID: 24730287
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Review on the fate of organic micropollutants in wastewater treatment and water reuse with membranes.
    Siegrist H; Joss A
    Water Sci Technol; 2012; 66(6):1369-76. PubMed ID: 22828319
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Membrane-based pretreatment to mitigate variations in desalination plants.
    Arevalo J; Sandin R; Kennedy MD; Salinas Rodriguez SG; Rogalla F; Monsalvo VM
    Water Sci Technol; 2018 Jul; 77(11-12):2858-2866. PubMed ID: 30065138
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Advancement of membrane separation technology for organic pollutant removal.
    Kafle SR; Adhikari S; Shrestha R; Ban S; Khatiwada G; Gaire P; Tuladhar N; Jiang G; Tiwari A
    Water Sci Technol; 2024 May; 89(9):2290-2310. PubMed ID: 38747950
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nanoscale materials and their use in water contaminants removal-a review.
    Mohmood I; Lopes CB; Lopes I; Ahmad I; Duarte AC; Pereira E
    Environ Sci Pollut Res Int; 2013 Mar; 20(3):1239-60. PubMed ID: 23292223
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Solute transport model for trace organic neutral and charged compounds through nanofiltration and reverse osmosis membranes.
    Kim TU; Drewes JE; Scott Summers R; Amy GL
    Water Res; 2007 Sep; 41(17):3977-88. PubMed ID: 17631378
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Integration of dissolved gas flotation and nanofiltration for M. aeruginosa and associated microcystins removal.
    Teixeira MR; Rosa MJ
    Water Res; 2006 Nov; 40(19):3612-20. PubMed ID: 16860837
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Efficiency of RO/NF membranes at the removal of veterinary antibiotics.
    Dolar D; Vuković A; Ašperger D; Košutić K
    Water Sci Technol; 2012; 65(2):317-23. PubMed ID: 22233911
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Performance characterization of nanofiltration membranes based on rigid star amphiphiles.
    Suzuki T; Lu Y; Zhang W; Moore JS; Mariñas BJ
    Environ Sci Technol; 2007 Sep; 41(17):6246-52. PubMed ID: 17937310
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-performance multi-functional reverse osmosis membranes obtained by carbon nanotube·polyamide nanocomposite.
    Inukai S; Cruz-Silva R; Ortiz-Medina J; Morelos-Gomez A; Takeuchi K; Hayashi T; Tanioka A; Araki T; Tejima S; Noguchi T; Terrones M; Endo M
    Sci Rep; 2015 Sep; 5():13562. PubMed ID: 26333385
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Novel nanofiltration membranes consisting of a sulfonated pentablock copolymer rejection layer for heavy metal removal.
    Thong Z; Han G; Cui Y; Gao J; Chung TS; Chan SY; Wei S
    Environ Sci Technol; 2014 Dec; 48(23):13880-7. PubMed ID: 25369240
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Distillery wastewater treatment by the membrane-based nanofiltration and reverse osmosis processes.
    Nataraj SK; Hosamani KM; Aminabhavi TM
    Water Res; 2006 Jul; 40(12):2349-56. PubMed ID: 16757012
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of operating parameters on the arsenic removal by nanofiltration.
    Figoli A; Cassano A; Criscuoli A; Mozumder MS; Uddin MT; Islam MA; Drioli E
    Water Res; 2010 Jan; 44(1):97-104. PubMed ID: 19781734
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Removal of N-nitrosamines in a membrane bioreactor and nanofiltration hybrid system for municipal wastewater reclamation: Process efficiency and mechanisms.
    Chon K; Kim SH; Cho J
    Bioresour Technol; 2015 Aug; 190():499-507. PubMed ID: 25797435
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The use of nanoparticles in polymeric and ceramic membrane structures: review of manufacturing procedures and performance improvement for water treatment.
    Kim J; Van der Bruggen B
    Environ Pollut; 2010 Jul; 158(7):2335-49. PubMed ID: 20430495
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modeling the effect of charge density in the active layers of reverse osmosis and nanofiltration membranes on the rejection of arsenic(III) and potassium iodide.
    Coronell O; Mi B; Mariñas BJ; Cahill DG
    Environ Sci Technol; 2013 Jan; 47(1):420-8. PubMed ID: 23199291
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.