These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

220 related articles for article (PubMed ID: 24749513)

  • 1. Transparent slippery surfaces made with sustainable porous cellulose lauroyl ester films.
    Chen L; Geissler A; Bonaccurso E; Zhang K
    ACS Appl Mater Interfaces; 2014 May; 6(9):6969-76. PubMed ID: 24749513
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lubricant-infused slippery surfaces: Facile fabrication, unique liquid repellence and antireflective properties.
    Li Q; Guo Z
    J Colloid Interface Sci; 2019 Feb; 536():507-515. PubMed ID: 30384056
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Liquid-infused nanostructured surfaces with extreme anti-ice and anti-frost performance.
    Kim P; Wong TS; Alvarenga J; Kreder MJ; Adorno-Martinez WE; Aizenberg J
    ACS Nano; 2012 Aug; 6(8):6569-77. PubMed ID: 22680067
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Superoleophobic Slippery Lubricant-Infused Surfaces: Combining Two Extremes in the Same Surface.
    Dong Z; Schumann MF; Hokkanen MJ; Chang B; Welle A; Zhou Q; Ras RHA; Xu Z; Wegener M; Levkin PA
    Adv Mater; 2018 Nov; 30(45):e1803890. PubMed ID: 30160319
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Passive Anti-Icing and Active Deicing Films.
    Wang T; Zheng Y; Raji AR; Li Y; Sikkema WK; Tour JM
    ACS Appl Mater Interfaces; 2016 Jun; 8(22):14169-73. PubMed ID: 27192099
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fabrication and Experimental Study of Micro/Sub-Micro Porous Copper Coating for Anti-Icing Application.
    Chen J; Fu C; Li J; Tang W; Gao X; Zhang J
    Materials (Basel); 2023 May; 16(10):. PubMed ID: 37241401
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Robust Slippery Liquid-Infused Porous Network Surfaces for Enhanced Anti-icing/Deicing Performance.
    Liu C; Li Y; Lu C; Liu Y; Feng S; Liu Y
    ACS Appl Mater Interfaces; 2020 Jun; 12(22):25471-25477. PubMed ID: 32379411
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fluid manipulation
    Wang X; Bai H; Li Z; Cao M
    Soft Matter; 2023 Jan; 19(4):588-608. PubMed ID: 36633123
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bioinspired self-repairing slippery surfaces with pressure-stable omniphobicity.
    Wong TS; Kang SH; Tang SK; Smythe EJ; Hatton BD; Grinthal A; Aizenberg J
    Nature; 2011 Sep; 477(7365):443-7. PubMed ID: 21938066
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Polyols-Infused Slippery Surfaces Based on Magnetic Fe
    Zhang G; Zhang Q; Cheng T; Zhan X; Chen F
    Langmuir; 2018 Apr; 34(13):4052-4058. PubMed ID: 29528662
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fabrication of biocompatible super stable lubricant-immobilized slippery surfaces by grafting a polydimethylsiloxane brush: excellent boiling water resistance, hot liquid repellency and long-term slippery stability.
    Jing X; Guo Z
    Nanoscale; 2019 May; 11(18):8870-8881. PubMed ID: 31012900
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Robust Slippery Coating with Superior Corrosion Resistance and Anti-Icing Performance for AZ31B Mg Alloy Protection.
    Zhang J; Gu C; Tu J
    ACS Appl Mater Interfaces; 2017 Mar; 9(12):11247-11257. PubMed ID: 28277644
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hemp-Based Sustainable Slippery Surfaces: Icephobic and Antithrombotic Properties.
    Sutherland DJ; Rather AM; Sabino RM; Vallabhuneni S; Wang W; Popat KC; Kota AK
    ACS Sustain Chem Eng; 2023 Feb; 11(6):2397-2403. PubMed ID: 38162324
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bioinspired Slippery Surfaces for Liquid Manipulation from Tiny Droplet to Bulk Fluid.
    Wang G; Ma F; Zhu L; Zhu P; Tang L; Hu H; Liu L; Li S; Zeng Z; Wang L; Xue Q
    Adv Mater; 2024 May; ():e2311489. PubMed ID: 38696759
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Anti-Icing Mechanism for a Novel Slippery Aluminum Stranded Conductor.
    Xiang H; Yuan Y; Zhu T; Dai X; Zhang C; Gai Y; Liao R
    ACS Appl Mater Interfaces; 2023 Jul; 15(28):34215-34229. PubMed ID: 37413794
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaporation and Electrowetting of Sessile Droplets on Slippery Liquid-Like Surfaces and Slippery Liquid-Infused Porous Surfaces (SLIPS).
    Armstrong S; McHale G; Ledesma-Aguilar R; Wells GG
    Langmuir; 2020 Sep; 36(38):11332-11340. PubMed ID: 32882130
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Temperature-Responsive Anisotropic Slippery Surface for Smart Control of the Droplet Motion.
    Wang BL; Heng L; Jiang L
    ACS Appl Mater Interfaces; 2018 Feb; 10(8):7442-7450. PubMed ID: 29392931
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Innovative Solid Slippery Coating: Uniting Mechanical Durability, Optical Transparency, Anti-Icing, and Anti-Graffiti Traits.
    Shen J; Ou J; Lei S; Hu Y; Wang F; Fang X; Li C; Li W; Amirfazli A
    Polymers (Basel); 2023 Oct; 15(19):. PubMed ID: 37836031
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Slippery Antifouling Polysiloxane-Polyurea Surfaces with Matrix Self-Healing and Lubricant Self-Replenishing.
    Yu M; Liu M; Fu S
    ACS Appl Mater Interfaces; 2021 Jul; 13(27):32149-32160. PubMed ID: 34212721
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Liquid infused porous surfaces for mineral fouling mitigation.
    Charpentier TV; Neville A; Baudin S; Smith MJ; Euvrard M; Bell A; Wang C; Barker R
    J Colloid Interface Sci; 2015 Apr; 444():81-6. PubMed ID: 25585291
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.