These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 24749787)

  • 1. Synergy between graphene and Au nanoparticles (heterojunction) towards quenching, improving Raman signal, and UV light sensing.
    Dalfovo MC; Lacconi GI; Moreno M; Yappert MC; Sumanasekera GU; Salvarezza RC; IbaƱez FJ
    ACS Appl Mater Interfaces; 2014 May; 6(9):6384-91. PubMed ID: 24749787
    [TBL] [Abstract][Full Text] [Related]  

  • 2. UV/ozone-oxidized large-scale graphene platform with large chemical enhancement in surface-enhanced Raman scattering.
    Huh S; Park J; Kim YS; Kim KS; Hong BH; Nam JM
    ACS Nano; 2011 Dec; 5(12):9799-806. PubMed ID: 22070659
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tuning plasmonic and chemical enhancement for SERS detection on graphene-based Au hybrids.
    Liang X; Liang B; Pan Z; Lang X; Zhang Y; Wang G; Yin P; Guo L
    Nanoscale; 2015 Dec; 7(47):20188-96. PubMed ID: 26575834
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nitrogen-doped graphene network supported copper nanoparticles encapsulated with graphene shells for surface-enhanced Raman scattering.
    Zhang X; Shi C; Liu E; Li J; Zhao N; He C
    Nanoscale; 2015 Oct; 7(40):17079-87. PubMed ID: 26419953
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ultrasensitive and recyclable SERS substrate based on Au-decorated Si nanowire arrays.
    Yang X; Zhong H; Zhu Y; Shen J; Li C
    Dalton Trans; 2013 Oct; 42(39):14324-30. PubMed ID: 23963100
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Strong light-matter interactions in sub-nanometer gaps defined by monolayer graphene: toward highly sensitive SERS substrates.
    Zhao Y; Li X; Du Y; Chen G; Qu Y; Jiang J; Zhu Y
    Nanoscale; 2014 Oct; 6(19):11112-20. PubMed ID: 25214169
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Surface-enhanced Raman scattering chip for femtomolar detection of mercuric ion (II) by ligand exchange.
    Du Y; Liu R; Liu B; Wang S; Han MY; Zhang Z
    Anal Chem; 2013 Mar; 85(6):3160-5. PubMed ID: 23438694
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synergizing the multiple plasmon resonance coupling and quantum effects to obtain enhanced SERS and PEC performance simultaneously on a noble metal-semiconductor substrate.
    Yang T; Liu W; Li L; Chen J; Hou X; Chou KC
    Nanoscale; 2017 Feb; 9(6):2376-2384. PubMed ID: 28145543
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Controlled Electrodeposition of Gold on Graphene: Maximization of the Defect-Enhanced Raman Scattering Response.
    Ananthoju B; Biroju RK; Theis W; Dryfe RAW
    Small; 2019 Nov; 15(48):e1901555. PubMed ID: 31112374
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Plasmonic-enhanced Raman scattering of graphene on growth substrates and its application in SERS.
    Zhao Y; Chen G; Du Y; Xu J; Wu S; Qu Y; Zhu Y
    Nanoscale; 2014 Nov; 6(22):13754-60. PubMed ID: 25285780
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of oxidation on surface-enhanced Raman scattering activity of silver nanoparticles: a quantitative correlation.
    Han Y; Lupitskyy R; Chou TM; Stafford CM; Du H; Sukhishvili S
    Anal Chem; 2011 Aug; 83(15):5873-80. PubMed ID: 21644591
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Surface-enhanced Raman scattering-active Au/SiO2 nanocomposites prepared using sonoelectrochemical pulse deposition methods.
    Chang CC; Yang KH; Liu YC; Hsu TC; Mai FD
    ACS Appl Mater Interfaces; 2012 Sep; 4(9):4700-7. PubMed ID: 22934654
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhancing the conductivity of transparent graphene films via doping.
    Kim KK; Reina A; Shi Y; Park H; Li LJ; Lee YH; Kong J
    Nanotechnology; 2010 Jul; 21(28):285205. PubMed ID: 20585167
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Meditating metal coenhanced fluorescence and SERS around gold nanoaggregates in nanosphere as bifunctional biosensor for multiple DNA targets.
    Liu Y; Wu P
    ACS Appl Mater Interfaces; 2013 Jun; 5(12):5832-44. PubMed ID: 23734937
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Competitive surface-enhanced Raman scattering effects in noble metal nanoparticle-decorated graphene sheets.
    Sun S; Wu P
    Phys Chem Chem Phys; 2011 Dec; 13(47):21116-20. PubMed ID: 22020382
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Surface-enhanced Raman scattering-active gold nanoparticles modified with a monolayer of silver film.
    Chang CC; Yang KH; Liu YC; Yu CC; Wu YH
    Analyst; 2012 Nov; 137(21):4943-50. PubMed ID: 22970430
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optical and surface enhanced Raman scattering properties of Au nanoparticles embedded in and located on a carbonaceous matrix.
    Prakash J; Kumar V; Kroon RE; Asokan K; Rigato V; Chae KH; Gautam S; Swart HC
    Phys Chem Chem Phys; 2016 Jan; 18(4):2468-80. PubMed ID: 26701612
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Surface-enhanced Raman scattering of single- and few-layer graphene by the deposition of gold nanoparticles.
    Lee J; Shim S; Kim B; Shin HS
    Chemistry; 2011 Feb; 17(8):2381-7. PubMed ID: 21264961
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Focused-ion-beam-fabricated Au nanorods coupled with Ag nanoparticles used as surface-enhanced Raman scattering-active substrate for analyzing trace melamine constituents in solution.
    Sivashanmugan K; Liao JD; Liu BH; Yao CK
    Anal Chim Acta; 2013 Oct; 800():56-64. PubMed ID: 24120168
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Adsorption characteristics of Au nanoparticles onto poly(4-vinylpyridine) surface revealed by QCM, AFM, UV/vis, and Raman scattering spectroscopy.
    Kim K; Ryoo H; Lee YM; Shin KS
    J Colloid Interface Sci; 2010 Feb; 342(2):479-84. PubMed ID: 19919863
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.