These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
203 related articles for article (PubMed ID: 24750036)
1. Live-cell imaging of phosphatidic acid dynamics in pollen tubes visualized by Spo20p-derived biosensor. Potocký M; Pleskot R; Pejchar P; Vitale N; Kost B; Žárský V New Phytol; 2014 Jul; 203(2):483-494. PubMed ID: 24750036 [TBL] [Abstract][Full Text] [Related]
2. Temporal production of the signaling lipid phosphatidic acid by phospholipase D2 determines the output of extracellular signal-regulated kinase signaling in cancer cells. Zhang F; Wang Z; Lu M; Yonekubo Y; Liang X; Zhang Y; Wu P; Zhou Y; Grinstein S; Hancock JF; Du G Mol Cell Biol; 2014 Jan; 34(1):84-95. PubMed ID: 24164897 [TBL] [Abstract][Full Text] [Related]
3. In vitro fusion catalyzed by the sporulation-specific t-SNARE light-chain Spo20p is stimulated by phosphatidic acid. Liu S; Wilson KA; Rice-Stitt T; Neiman AM; McNew JA Traffic; 2007 Nov; 8(11):1630-43. PubMed ID: 17714435 [TBL] [Abstract][Full Text] [Related]
4. Phosphatidylinositol-4,5-bisphosphate influences Nt-Rac5-mediated cell expansion in pollen tubes of Nicotiana tabacum. Ischebeck T; Stenzel I; Hempel F; Jin X; Mosblech A; Heilmann I Plant J; 2011 Feb; 65(3):453-68. PubMed ID: 21265898 [TBL] [Abstract][Full Text] [Related]
5. Testing Pollen Tube Proteins for In Vivo Binding to Phosphatidic Acid by n-Butanol Treatment and Confocal Microscopy. Fritz C; Kost B Methods Mol Biol; 2020; 2160():307-325. PubMed ID: 32529446 [TBL] [Abstract][Full Text] [Related]
6. Interaction of the Spo20 membrane-sensor motif with phosphatidic acid and other anionic lipids, and influence of the membrane environment. Horchani H; de Saint-Jean M; Barelli H; Antonny B PLoS One; 2014; 9(11):e113484. PubMed ID: 25426975 [TBL] [Abstract][Full Text] [Related]
7. Functional analysis of phospholipase Dδ family in tobacco pollen tubes. Pejchar P; Sekereš J; Novotný O; Žárský V; Potocký M Plant J; 2020 Jul; 103(1):212-226. PubMed ID: 32064689 [TBL] [Abstract][Full Text] [Related]
8. Phosphatidic acid binding proteins display differential binding as a function of membrane curvature stress and chemical properties. Putta P; Rankenberg J; Korver RA; van Wijk R; Munnik T; Testerink C; Kooijman EE Biochim Biophys Acta; 2016 Nov; 1858(11):2709-2716. PubMed ID: 27480805 [TBL] [Abstract][Full Text] [Related]
9. Pollen tube tip growth depends on plasma membrane polarization mediated by tobacco PLC3 activity and endocytic membrane recycling. Helling D; Possart A; Cottier S; Klahre U; Kost B Plant Cell; 2006 Dec; 18(12):3519-34. PubMed ID: 17172355 [TBL] [Abstract][Full Text] [Related]
10. Heterogeneity of phosphatidic acid levels and distribution at the plasma membrane in living cells as visualized by a Föster resonance energy transfer (FRET) biosensor. Nishioka T; Frohman MA; Matsuda M; Kiyokawa E J Biol Chem; 2010 Nov; 285(46):35979-87. PubMed ID: 20826779 [TBL] [Abstract][Full Text] [Related]
11. Visualization of phosphatidic acid fluctuations in the plasma membrane of living cells. Ferraz-Nogueira JP; Díez-Guerra FJ; Llopis J PLoS One; 2014; 9(7):e102526. PubMed ID: 25025521 [TBL] [Abstract][Full Text] [Related]
12. Analysis of Exocyst Subunit EXO70 Family Reveals Distinct Membrane Polar Domains in Tobacco Pollen Tubes. Sekereš J; Pejchar P; Šantrůček J; Vukašinović N; Žárský V; Potocký M Plant Physiol; 2017 Mar; 173(3):1659-1675. PubMed ID: 28082718 [TBL] [Abstract][Full Text] [Related]
13. Exocyst SEC3 and Phosphoinositides Define Sites of Exocytosis in Pollen Tube Initiation and Growth. Bloch D; Pleskot R; Pejchar P; Potocký M; Trpkošová P; Cwiklik L; Vukašinović N; Sternberg H; Yalovsky S; Žárský V Plant Physiol; 2016 Oct; 172(2):980-1002. PubMed ID: 27516531 [TBL] [Abstract][Full Text] [Related]
14. Genetic evidence of a role for membrane lipid composition in the regulation of soluble NEM-sensitive factor receptor function in Saccharomyces cerevisiae. Coluccio A; Malzone M; Neiman AM Genetics; 2004 Jan; 166(1):89-97. PubMed ID: 15020409 [TBL] [Abstract][Full Text] [Related]
16. MAPKs Influence Pollen Tube Growth by Controlling the Formation of Phosphatidylinositol 4,5-Bisphosphate in an Apical Plasma Membrane Domain. Hempel F; Stenzel I; Heilmann M; Krishnamoorthy P; Menzel W; Golbik R; Helm S; Dobritzsch D; Baginsky S; Lee J; Hoehenwarter W; Heilmann I Plant Cell; 2017 Dec; 29(12):3030-3050. PubMed ID: 29167320 [TBL] [Abstract][Full Text] [Related]
17. Plasma membrane nano-organization specifies phosphoinositide effects on Rho-GTPases and actin dynamics in tobacco pollen tubes. Fratini M; Krishnamoorthy P; Stenzel I; Riechmann M; Matzner M; Bacia K; Heilmann M; Heilmann I Plant Cell; 2021 May; 33(3):642-670. PubMed ID: 33955493 [TBL] [Abstract][Full Text] [Related]
18. Osmotically induced cell swelling versus cell shrinking elicits specific changes in phospholipid signals in tobacco pollen tubes. Zonia L; Munnik T Plant Physiol; 2004 Feb; 134(2):813-23. PubMed ID: 14739344 [TBL] [Abstract][Full Text] [Related]
19. Inhibition of actin polymerisation by low concentration Latrunculin B affects endocytosis and alters exocytosis in shank and tip of tobacco pollen tubes. Moscatelli A; Idilli AI; Rodighiero S; Caccianiga M Plant Biol (Stuttg); 2012 Sep; 14(5):770-82. PubMed ID: 22288466 [TBL] [Abstract][Full Text] [Related]
20. DIACYLGLYCEROL KINASE 5 regulates polar tip growth of tobacco pollen tubes. Scholz P; Pejchar P; Fernkorn M; Škrabálková E; Pleskot R; Blersch K; Munnik T; Potocký M; Ischebeck T New Phytol; 2022 Mar; 233(5):2185-2202. PubMed ID: 34931304 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]