These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
173 related articles for article (PubMed ID: 24750120)
1. Histidine-mediated xylem loading of zinc is a species-wide character in Noccaea caerulescens. Kozhevnikova AD; Seregin IV; Erlikh NT; Shevyreva TA; Andreev IM; Verweij R; Schat H New Phytol; 2014 Jul; 203(2):508-519. PubMed ID: 24750120 [TBL] [Abstract][Full Text] [Related]
2. Chelation by histidine inhibits the vacuolar sequestration of nickel in roots of the hyperaccumulator Thlaspi caerulescens. Richau KH; Kozhevnikova AD; Seregin IV; Vooijs R; Koevoets PLM; Smith JAC; Ivanov VB; Schat H New Phytol; 2009; 183(1):106-116. PubMed ID: 19368671 [TBL] [Abstract][Full Text] [Related]
3. Histidine promotes the loading of nickel and zinc, but not of cadmium, into the xylem in Noccaea caerulescens. Kozhevnikova AD; Seregin IV; Verweij R; Schat H Plant Signal Behav; 2014; 9(9):e29580. PubMed ID: 25763695 [TBL] [Abstract][Full Text] [Related]
4. Nickel and zinc isotope fractionation in hyperaccumulating and nonaccumulating plants. Deng TH; Cloquet C; Tang YT; Sterckeman T; Echevarria G; Estrade N; Morel JL; Qiu RL Environ Sci Technol; 2014 Oct; 48(20):11926-33. PubMed ID: 25222693 [TBL] [Abstract][Full Text] [Related]
5. Zinc Isotope Fractionation in the Hyperaccumulator Noccaea caerulescens and the Nonaccumulating Plant Thlaspi arvense at Low and High Zn Supply. Tang YT; Cloquet C; Deng TH; Sterckeman T; Echevarria G; Yang WJ; Morel JL; Qiu RL Environ Sci Technol; 2016 Aug; 50(15):8020-7. PubMed ID: 27359107 [TBL] [Abstract][Full Text] [Related]
6. Molecular physiology of zinc transport in the Zn hyperaccumulator Thlaspi caerulescens. Lasat MM; Pence NS; Garvin DF; Ebbs SD; Kochian LV J Exp Bot; 2000 Jan; 51(342):71-9. PubMed ID: 10938797 [TBL] [Abstract][Full Text] [Related]
7. Reciprocal grafting separates the roles of the root and shoot in zinc hyperaccumulation in Thlaspi caerulescens. Guimarães MA; Gustin JL; Salt DE New Phytol; 2009 Oct; 184(2):323-329. PubMed ID: 19656301 [TBL] [Abstract][Full Text] [Related]
8. Hyperaccumulation of Zn by Thlaspi caerulescens can ameliorate Zn toxicity in the rhizosphere of cocropped Thlaspi arvense. Whiting SN; Leake JR; McGrath SP; Baker AJ Environ Sci Technol; 2001 Aug; 35(15):3237-41. PubMed ID: 11506012 [TBL] [Abstract][Full Text] [Related]
9. Altered Zn compartmentation in the root symplasm and stimulated Zn absorption into the leaf as mechanisms involved in Zn hyperaccumulation in thlaspi caerulescens. Lasat MM; Baker AJ; Kochian LV Plant Physiol; 1998 Nov; 118(3):875-83. PubMed ID: 9808732 [TBL] [Abstract][Full Text] [Related]
10. Plant Cd2+ and Zn2+ status effects on root and shoot heavy metal accumulation in Thlaspi caerulescens. Papoyan A; Piñeros M; Kochian LV New Phytol; 2007; 175(1):51-58. PubMed ID: 17547666 [TBL] [Abstract][Full Text] [Related]
11. Expression of the ZNT1 Zinc Transporter from the Metal Hyperaccumulator Noccaea caerulescens Confers Enhanced Zinc and Cadmium Tolerance and Accumulation to Arabidopsis thaliana. Lin YF; Hassan Z; Talukdar S; Schat H; Aarts MG PLoS One; 2016; 11(3):e0149750. PubMed ID: 26930473 [TBL] [Abstract][Full Text] [Related]
12. Root-to-shoot long-distance circulation of nicotianamine and nicotianamine-nickel chelates in the metal hyperaccumulator Thlaspi caerulescens. Mari S; Gendre D; Pianelli K; Ouerdane L; Lobinski R; Briat JF; Lebrun M; Czernic P J Exp Bot; 2006; 57(15):4111-22. PubMed ID: 17079698 [TBL] [Abstract][Full Text] [Related]
13. Cadmium-zinc accumulation and photosystem II responses of Noccaea caerulescens to Cd and Zn exposure. Bayçu G; Gevrek-Kürüm N; Moustaka J; Csatári I; Rognes SE; Moustakas M Environ Sci Pollut Res Int; 2017 Jan; 24(3):2840-2850. PubMed ID: 27838905 [TBL] [Abstract][Full Text] [Related]
14. Characterization of the high affinity Zn transporter from Noccaea caerulescens, NcZNT1, and dissection of its promoter for its role in Zn uptake and hyperaccumulation. Milner MJ; Craft E; Yamaji N; Koyama E; Ma JF; Kochian LV New Phytol; 2012 Jul; 195(1):113-23. PubMed ID: 22524643 [TBL] [Abstract][Full Text] [Related]
15. Root and shoot transcriptome analysis of two ecotypes of Noccaea caerulescens uncovers the role of NcNramp1 in Cd hyperaccumulation. Milner MJ; Mitani-Ueno N; Yamaji N; Yokosho K; Craft E; Fei Z; Ebbs S; Clemencia Zambrano M; Ma JF; Kochian LV Plant J; 2014 May; 78(3):398-410. PubMed ID: 24547775 [TBL] [Abstract][Full Text] [Related]
16. Variability of trace element distribution in Noccaea spp., Arabidopsis spp., and Thlaspi arvense leaves: the role of plant species and element accumulation ability. Galiová MV; Száková J; Prokeš L; Čadková Z; Coufalík P; Kanický V; Otruba V; Tlustoš P Environ Monit Assess; 2019 Feb; 191(3):181. PubMed ID: 30798372 [TBL] [Abstract][Full Text] [Related]
17. Imaging Zn and Ni distributions in leaves of different ages of the hyperaccumulator Noccaea caerulescens by synchrotron-based X-ray fluorescence. do Nascimento CWA; Hesterberg D; Tappero R J Hazard Mater; 2021 Apr; 408():124813. PubMed ID: 33385722 [TBL] [Abstract][Full Text] [Related]
18. The long-term variation of Cd and Zn hyperaccumulation by Noccaea spp and Arabidopsis halleri plants in both pot and field conditions. Tlustoš P; Břendová K; Száková J; Najmanová J; Koubová K Int J Phytoremediation; 2016; 18(2):110-5. PubMed ID: 26280307 [TBL] [Abstract][Full Text] [Related]
19. Rhizosphere bacteria mobilize Zn for hyperaccumulation by Thlaspi caerulescens. Whiting SN; de Souza MP; Terry N Environ Sci Technol; 2001 Aug; 35(15):3144-50. PubMed ID: 11505990 [TBL] [Abstract][Full Text] [Related]
20. Phytochelatin synthesis is not responsible for Cd tolerance in the Zn/Cd hyperaccumulator Thlaspi caerulescens (J. & C. Presl). Ebbs S; Lau I; Ahner B; Kochian L Planta; 2002 Feb; 214(4):635-40. PubMed ID: 11925047 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]