BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 24750169)

  • 1. Single electron transfer in radical ion and radical-mediated organic, materials and polymer synthesis.
    Zhang N; Samanta SR; Rosen BM; Percec V
    Chem Rev; 2014 Jun; 114(11):5848-958. PubMed ID: 24750169
    [No Abstract]   [Full Text] [Related]  

  • 2. Radical Retrosynthesis.
    Smith JM; Harwood SJ; Baran PS
    Acc Chem Res; 2018 Aug; 51(8):1807-1817. PubMed ID: 30070821
    [TBL] [Abstract][Full Text] [Related]  

  • 3. From polymer to small organic molecules: a tight relationship between radical chemistry and solid-phase organic synthesis.
    Mirizzi D; Pulici M
    Molecules; 2011 Apr; 16(4):3252-314. PubMed ID: 21512439
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gold Catalyzed Multicomponent Reactions beyond A³ Coupling.
    Visbal R; Graus S; Herrera RP; Gimeno MC
    Molecules; 2018 Sep; 23(9):. PubMed ID: 30181514
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrochemistry and Photoredox Catalysis: A Comparative Evaluation in Organic Synthesis.
    Verschueren RH; De Borggraeve WM
    Molecules; 2019 Jun; 24(11):. PubMed ID: 31195644
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Polyphosphorhydrazone-Based Radical Dendrimers.
    Lloveras V; Vidal-Gancedo J
    Molecules; 2021 Feb; 26(5):. PubMed ID: 33669016
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Expedient synthesis of α-substituted fluoroethenes.
    Mandal SK; Ghosh AK; Kumar R; Zajc B
    Org Biomol Chem; 2012 Apr; 10(16):3164-7. PubMed ID: 22349519
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrophotocatalysis with a Trisaminocyclopropenium Radical Dication.
    Huang H; Strater ZM; Rauch M; Shee J; Sisto TJ; Nuckolls C; Lambert TH
    Angew Chem Int Ed Engl; 2019 Sep; 58(38):13318-13322. PubMed ID: 31306561
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthetic Organic Electrochemistry: Calling All Engineers.
    Yan M; Kawamata Y; Baran PS
    Angew Chem Int Ed Engl; 2018 Apr; 57(16):4149-4155. PubMed ID: 28834012
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Discovery and development of organic super-electron-donors.
    Murphy JA
    J Org Chem; 2014 May; 79(9):3731-46. PubMed ID: 24605904
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The economies of synthesis.
    Newhouse T; Baran PS; Hoffmann RW
    Chem Soc Rev; 2009 Nov; 38(11):3010-21. PubMed ID: 19847337
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Visible-light-enabled stereoselective synthesis of functionalized cyclohexylamine derivatives
    Lu YN; Che C; Zhen G; Chang X; Dong XQ; Wang CJ
    Chem Sci; 2024 May; 15(17):6507-6514. PubMed ID: 38699278
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Simulating Electron Transfer Reactions in Solution: Radical-Polar Crossover.
    Skinner KC; Kammeraad JA; Wymore T; Narayan ARH; Zimmerman PM
    J Phys Chem B; 2023 Nov; 127(47):10097-10107. PubMed ID: 37976536
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ketyl Radical Coupling Enabled by Polycyclic Aromatic Hydrocarbon Electrophotocatalysts.
    Edgecomb JM; Alektiar SN; Cowper NGW; Sowin JA; Wickens ZK
    J Am Chem Soc; 2023 Sep; 145(37):20169-20175. PubMed ID: 37676728
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electroreductive Radical Borylation of Unactivated (Hetero)Aryl Chlorides Without Light by Using Cumulene-Based Redox Mediators.
    Lai Y; Halder A; Kim J; Hicks TJ; Milner PJ
    Angew Chem Int Ed Engl; 2023 Oct; 62(40):e202310246. PubMed ID: 37559156
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Photoredox catalysis harvesting multiple photon or electrochemical energies.
    Lepori M; Schmid S; Barham JP
    Beilstein J Org Chem; 2023; 19():1055-1145. PubMed ID: 37533877
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prediction of Redox Power for Photocatalysts: Synergistic Combination of DFT and Machine Learning.
    Fehér PP; Madarász Á; Stirling A
    J Chem Theory Comput; 2023 Jul; 19(13):4125-4135. PubMed ID: 37382930
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Screening Libraries to Discover Molecular Design Principles for the Targeted Delivery of mRNA with One-Component Ionizable Amphiphilic Janus Dendrimers Derived from Plant Phenolic Acids.
    Lu J; Atochina-Vasserman EN; Maurya DS; Shalihin MI; Zhang D; Chenna SS; Adamson J; Liu M; Shah HUR; Shah H; Xiao Q; Queeley B; Ona NA; Reagan EK; Ni H; Sahoo D; Peterca M; Weissman D; Percec V
    Pharmaceutics; 2023 May; 15(6):. PubMed ID: 37376020
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stimuli-Responsive Principles of Supramolecular Organizations Emerging from Self-Assembling and Self-Organizable Dendrons, Dendrimers, and Dendronized Polymers.
    Percec V; Sahoo D; Adamson J
    Polymers (Basel); 2023 Apr; 15(8):. PubMed ID: 37111979
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Assembling Complex Macromolecules and Self-Organizations of Biological Relevance with Cu(I)-Catalyzed Azide-Alkyne, Thio-Bromo, and TERMINI Double "Click" Reactions.
    Moreno A; Lligadas G; Adamson J; Maurya DS; Percec V
    Polymers (Basel); 2023 Feb; 15(5):. PubMed ID: 36904317
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.