BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 24750317)

  • 1. Genome-wide scans detect adaptation to aridity in a widespread forest tree species.
    Steane DA; Potts BM; McLean E; Prober SM; Stock WD; Vaillancourt RE; Byrne M
    Mol Ecol; 2014 May; 23(10):2500-13. PubMed ID: 24750317
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Signatures of diversifying selection at EST-SSR loci and association with climate in natural Eucalyptus populations.
    Bradbury D; Smithson A; Krauss SL
    Mol Ecol; 2013 Oct; 22(20):5112-29. PubMed ID: 24118117
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evidence of genomic adaptation to climate in Eucalyptus microcarpa: Implications for adaptive potential to projected climate change.
    Jordan R; Hoffmann AA; Dillon SK; Prober SM
    Mol Ecol; 2017 Nov; 26(21):6002-6020. PubMed ID: 28862778
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Plasticity of functional traits varies clinally along a rainfall gradient in Eucalyptus tricarpa.
    McLean EH; Prober SM; Stock WD; Steane DA; Potts BM; Vaillancourt RE; Byrne M
    Plant Cell Environ; 2014 Jun; 37(6):1440-51. PubMed ID: 24329726
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Back to nature: ecological genomics of loblolly pine (Pinus taeda, Pinaceae).
    Eckert AJ; Bower AD; González-Martínez SC; Wegrzyn JL; Coop G; Neale DB
    Mol Ecol; 2010 Sep; 19(17):3789-805. PubMed ID: 20723060
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Landscape genomics and a common garden trial reveal adaptive differentiation to temperature across Europe in the tree species Alnus glutinosa.
    De Kort H; Vandepitte K; Bruun HH; Closset-Kopp D; Honnay O; Mergeay J
    Mol Ecol; 2014 Oct; 23(19):4709-21. PubMed ID: 24860941
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genome scans for divergent selection in natural populations of the widespread hardwood species Eucalyptus grandis (Myrtaceae) using microsatellites.
    Song Z; Zhang M; Li F; Weng Q; Zhou C; Li M; Li J; Huang H; Mo X; Gan S
    Sci Rep; 2016 Oct; 6():34941. PubMed ID: 27748400
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genetic and genomic approaches to assess adaptive genetic variation in plants: forest trees as a model.
    Gailing O; Vornam B; Leinemann L; Finkeldey R
    Physiol Plant; 2009 Dec; 137(4):509-19. PubMed ID: 19627554
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genomic evidence of introgression and adaptation in a model subtropical tree species, Eucalyptus grandis.
    Mostert-O'Neill MM; Reynolds SM; Acosta JJ; Lee DJ; Borevitz JO; Myburg AA
    Mol Ecol; 2021 Feb; 30(3):625-638. PubMed ID: 32881106
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Scanning the genome for gene SNPs related to climate adaptation and estimating selection at the molecular level in boreal black spruce.
    Prunier J; Laroche J; Beaulieu J; Bousquet J
    Mol Ecol; 2011 Apr; 20(8):1702-16. PubMed ID: 21375634
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Two are better than one: combining landscape genomics and common gardens for detecting local adaptation in forest trees.
    Lepais O; Bacles CF
    Mol Ecol; 2014 Oct; 23(19):4671-3. PubMed ID: 25263401
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genomic Scans across Three Eucalypts Suggest that Adaptation to Aridity is a Genome-Wide Phenomenon.
    Steane DA; Potts BM; McLean EH; Collins L; Holland BR; Prober SM; Stock WD; Vaillancourt RE; Byrne M
    Genome Biol Evol; 2017 Feb; 9(2):253-265. PubMed ID: 28391293
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A genome-wide scan shows evidence for local adaptation in a widespread keystone Neotropical forest tree.
    Collevatti RG; Novaes E; Silva-Junior OB; Vieira LD; Lima-Ribeiro MS; Grattapaglia D
    Heredity (Edinb); 2019 Aug; 123(2):117-137. PubMed ID: 30755734
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genomic patterns of species diversity and divergence in Eucalyptus.
    Hudson CJ; Freeman JS; Myburg AA; Potts BM; Vaillancourt RE
    New Phytol; 2015 Jun; 206(4):1378-90. PubMed ID: 25678438
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Are adaptive loci transferable across genomes of related species? Outlier and environmental association analyses in Alpine Brassicaceae species.
    Zulliger D; Schnyder E; Gugerli F
    Mol Ecol; 2013 Mar; 22(6):1626-39. PubMed ID: 23398479
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Temperature-related natural selection in a wind-pollinated tree across regional and continental scales.
    Cox K; Vanden Broeck A; Van Calster H; Mergeay J
    Mol Ecol; 2011 Jul; 20(13):2724-38. PubMed ID: 21623981
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [From population genetics to population genomics of forest trees: integrated population genomics approach].
    Krutovskiĭ KV
    Genetika; 2006 Oct; 42(10):1304-18. PubMed ID: 17152702
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evidence of divergent selection for drought and cold tolerance at landscape and local scales in Abies alba Mill. in the French Mediterranean Alps.
    Roschanski AM; Csilléry K; Liepelt S; Oddou-Muratorio S; Ziegenhagen B; Huard F; Ullrich KK; Postolache D; Vendramin GG; Fady B
    Mol Ecol; 2016 Feb; 25(3):776-94. PubMed ID: 26676992
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Climate determines vascular traits in the ecologically diverse genus Eucalyptus.
    Pfautsch S; Harbusch M; Wesolowski A; Smith R; Macfarlane C; Tjoelker MG; Reich PB; Adams MA
    Ecol Lett; 2016 Mar; 19(3):240-8. PubMed ID: 26743135
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multiplexed microsatellite markers for the genetic analysis of Eucalyptus leucoxylon (Myrtaceae) and their utility for ecological and breeding studies in other eucalyptus species.
    Ottewell KM; Donnellan SC; Moran GF; Paton DC
    J Hered; 2005; 96(4):445-51. PubMed ID: 15843635
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.