BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 24750494)

  • 1. Involvement of histamine in endothelium-dependent relaxation of mesenteric lymphatic vessels.
    Nizamutdinova IT; Maejima D; Nagai T; Bridenbaugh E; Thangaswamy S; Chatterjee V; Meininger CJ; Gashev AA
    Microcirculation; 2014 Oct; 21(7):640-8. PubMed ID: 24750494
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Involvement of H1 and H2 receptors and soluble guanylate cyclase in histamine-induced relaxation of rat mesenteric collecting lymphatics.
    Kurtz KH; Moor AN; Souza-Smith FM; Breslin JW
    Microcirculation; 2014 Oct; 21(7):593-605. PubMed ID: 24702851
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Histamine as an Endothelium-Derived Relaxing Factor in Aged Mesenteric Lymphatic Vessels.
    Nizamutdinova IT; Maejima D; Nagai T; Meininger CJ; Gashev AA
    Lymphat Res Biol; 2017 Jun; 15(2):136-145. PubMed ID: 28453392
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Itching for answers: how histamine relaxes lymphatic vessels.
    Scallan JP; Davis MJ
    Microcirculation; 2014 Oct; 21(7):575-7. PubMed ID: 25123019
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modulation of mesenteric collecting lymphatic contractions by σ
    Trujillo AN; Katnik C; Cuevas J; Cha BJ; Taylor-Clark TE; Breslin JW
    Am J Physiol Heart Circ Physiol; 2017 Oct; 313(4):H839-H853. PubMed ID: 28778917
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanisms of relaxant activity of the nitric oxide-independent soluble guanylyl cyclase stimulator BAY 41-2272 in rat tracheal smooth muscle.
    Toque HA; Mónica FZ; Morganti RP; De Nucci G; Antunes E
    Eur J Pharmacol; 2010 Oct; 645(1-3):158-64. PubMed ID: 20670622
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of histamine on the contractile and electrical activity in isolated lymphatic vessels of the guinea-pig mesentery.
    Fox JL; von der Weid PY
    Br J Pharmacol; 2002 Aug; 136(8):1210-8. PubMed ID: 12163355
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanism of relaxation and interaction with nitric oxide of the soluble guanylate cyclase stimulator BAY 41-2272 in mouse gastric fundus and colon.
    Cosyns SM; Lefebvre RA
    Eur J Pharmacol; 2012 Jul; 686(1-3):104-15. PubMed ID: 22575520
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nitric oxide and endothelium-dependent relaxation in tracheobronchial lymph vessels.
    Ferguson MK; DeFilippi VJ
    Microvasc Res; 1994 May; 47(3):308-17. PubMed ID: 8084297
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of endothelium and nitric oxide in histamine-induced responses in human cranial arteries and detection of mRNA encoding H1- and H2-receptors by RT-PCR.
    Jansen-Olesen I; Ottosson A; Cantera L; Strunk S; Lassen LH; Olesen J; Mortensen A; Engel U; Edvinsson L
    Br J Pharmacol; 1997 May; 121(1):41-8. PubMed ID: 9146885
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phasic contractions of rat mesenteric lymphatics increase basal and phasic nitric oxide generation in vivo.
    Bohlen HG; Wang W; Gashev A; Gasheva O; Zawieja D
    Am J Physiol Heart Circ Physiol; 2009 Oct; 297(4):H1319-28. PubMed ID: 19666850
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multiple mechanisms of vascular smooth muscle relaxation by the activation of proteinase-activated receptor 2 in mouse mesenteric arterioles.
    McGuire JJ; Hollenberg MD; Andrade-Gordon P; Triggle CR
    Br J Pharmacol; 2002 Jan; 135(1):155-69. PubMed ID: 11786491
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sphingosine 1-phosphate (S1P) induces S1P2 receptor-dependent tonic contraction in murine iliac lymph vessels.
    Kimizuka K; Kawai Y; Maejima D; Ajima K; Kaidoh M; Ohhashi T
    Microcirculation; 2013 Jan; 20(1):1-16. PubMed ID: 22913344
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Involvement of soluble guanylate cyclase alpha(1) and alpha(2), and SK(Ca) channels in NANC relaxation of mouse distal colon.
    Dhaese I; Vanneste G; Sips P; Buys E; Brouckaert P; Lefebvre RA
    Eur J Pharmacol; 2008 Jul; 589(1-3):251-9. PubMed ID: 18572161
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stimulation of soluble guanylyl cyclase by BAY 41-2272 relaxes anococcygeus muscle: interaction with nitric oxide.
    Teixeira CE; Priviero FB; Claudino MA; Baracat JS; De Nucci G; Webb RC; Antunes E
    Eur J Pharmacol; 2006 Jan; 530(1-2):157-65. PubMed ID: 16371226
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Blunted flow-mediated responses and diminished nitric oxide synthase expression in lymphatic thoracic ducts of a rat model of metabolic syndrome.
    Zawieja SD; Gasheva O; Zawieja DC; Muthuchamy M
    Am J Physiol Heart Circ Physiol; 2016 Feb; 310(3):H385-93. PubMed ID: 26637560
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inhibitory Effect of Interferons on Contractive Activity of Bovine Mesenteric Lymphatic Vessels and Nodes.
    Unt DV; Lobov GI
    Bull Exp Biol Med; 2017 Dec; 164(2):123-126. PubMed ID: 29181669
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Aging-associated alterations in contractility of rat mesenteric lymphatic vessels.
    Nagai T; Bridenbaugh EA; Gashev AA
    Microcirculation; 2011 Aug; 18(6):463-73. PubMed ID: 21466607
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Endothelial modulation of a nitric oxide donor complex-induced relaxation in normotensive and spontaneously hypertensive rats.
    Potje SR; Troiano JA; Grando MD; Graton ME; da Silva RS; Bendhack LM; Antoniali C
    Life Sci; 2018 May; 201():130-140. PubMed ID: 29604271
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of volatile anesthetics on acetylcholine-induced relaxation in the rabbit mesenteric resistance artery.
    Akata T; Nakashima M; Kodama K; Boyle WA; Takahashi S
    Anesthesiology; 1995 Jan; 82(1):188-204. PubMed ID: 7832300
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.