These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
237 related articles for article (PubMed ID: 24750865)
1. Quantification of crystalline cellulose in lignocellulosic biomass using sum frequency generation (SFG) vibration spectroscopy and comparison with other analytical methods. Barnette AL; Lee C; Bradley LC; Schreiner EP; Park YB; Shin H; Cosgrove DJ; Park S; Kim SH Carbohydr Polym; 2012 Jul; 89(3):802-9. PubMed ID: 24750865 [TBL] [Abstract][Full Text] [Related]
2. Selective detection of crystalline cellulose in plant cell walls with sum-frequency-generation (SFG) vibration spectroscopy. Barnette AL; Bradley LC; Veres BD; Schreiner EP; Park YB; Park J; Park S; Kim SH Biomacromolecules; 2011 Jul; 12(7):2434-9. PubMed ID: 21615075 [TBL] [Abstract][Full Text] [Related]
3. Sum-frequency-generation vibration spectroscopy and density functional theory calculations with dispersion corrections (DFT-D2) for cellulose Iα and Iβ. Lee CM; Mohamed NM; Watts HD; Kubicki JD; Kim SH J Phys Chem B; 2013 Jun; 117(22):6681-92. PubMed ID: 23738844 [TBL] [Abstract][Full Text] [Related]
4. Quantum Mechanical Calculations of Vibrational Sum-Frequency-Generation (SFG) Spectra of Cellulose: Dependence of the CH and OH Peak Intensity on the Polarity of Cellulose Chains within the SFG Coherence Domain. Lee CM; Chen X; Weiss PA; Jensen L; Kim SH J Phys Chem Lett; 2017 Jan; 8(1):55-60. PubMed ID: 27936745 [TBL] [Abstract][Full Text] [Related]
5. Understanding changes in cellulose crystalline structure of lignocellulosic biomass during ionic liquid pretreatment by XRD. Zhang J; Wang Y; Zhang L; Zhang R; Liu G; Cheng G Bioresour Technol; 2014 Jan; 151():402-5. PubMed ID: 24269347 [TBL] [Abstract][Full Text] [Related]
6. Estimation of cellulose crystallinity of lignocelluloses using near-IR FT-Raman spectroscopy and comparison of the Raman and Segal-WAXS methods. Agarwal UP; Reiner RR; Ralph SA J Agric Food Chem; 2013 Jan; 61(1):103-13. PubMed ID: 23241140 [TBL] [Abstract][Full Text] [Related]
7. Effects of plant cell wall matrix polysaccharides on bacterial cellulose structure studied with vibrational sum frequency generation spectroscopy and X-ray diffraction. Park YB; Lee CM; Kafle K; Park S; Cosgrove DJ; Kim SH Biomacromolecules; 2014 Jul; 15(7):2718-24. PubMed ID: 24846814 [TBL] [Abstract][Full Text] [Related]
8. X-ray scattering studies of lignocellulosic biomass: a review. Xu F; Shi YC; Wang D Carbohydr Polym; 2013 May; 94(2):904-17. PubMed ID: 23544649 [TBL] [Abstract][Full Text] [Related]
9. Molecular bonding characteristics of Self-plasticized bamboo composites. Xue Q; Peng W; Ohkoshi M Pak J Pharm Sci; 2014 Jul; 27(4 Suppl):975-82. PubMed ID: 25016255 [TBL] [Abstract][Full Text] [Related]
10. Statistical correlation of spectroscopic analysis and enzymatic hydrolysis of poplar samples. Laureano-Perez L; Dale BE; Zhu L; O'Dwyer JP; Holtzapple M Biotechnol Prog; 2006; 22(3):835-41. PubMed ID: 16739968 [TBL] [Abstract][Full Text] [Related]
11. Solar assisted alkali pretreatment of garden biomass: Effects on lignocellulose degradation, enzymatic hydrolysis, crystallinity and ultra-structural changes in lignocellulose. Gabhane J; William SP; Vaidya AN; Das S; Wate SR Waste Manag; 2015 Jun; 40():92-9. PubMed ID: 25816769 [TBL] [Abstract][Full Text] [Related]
13. Monitoring meso-scale ordering of cellulose in intact plant cell walls using sum frequency generation spectroscopy. Park YB; Lee CM; Koo BW; Park S; Cosgrove DJ; Kim SH Plant Physiol; 2013 Oct; 163(2):907-13. PubMed ID: 23995148 [TBL] [Abstract][Full Text] [Related]
14. Multiple linear regression model for predicting biomass digestibility from structural features. Zhu L; O'Dwyer JP; Chang VS; Granda CB; Holtzapple MT Bioresour Technol; 2010 Jul; 101(13):4971-9. PubMed ID: 19962880 [TBL] [Abstract][Full Text] [Related]
15. Enzymatic hydrolysis and characterization of lignocellulosic biomass exposed to electron beam irradiation. Karthika K; Arun AB; Rekha PD Carbohydr Polym; 2012 Oct; 90(2):1038-45. PubMed ID: 22840037 [TBL] [Abstract][Full Text] [Related]
16. "Self-absorption" phenomenon in near-infrared Fourier transform Raman spectroscopy of cellulosic and lignocellulosic materials. Agarwal UP; Kawai N Appl Spectrosc; 2005 Mar; 59(3):385-8. PubMed ID: 15912594 [No Abstract] [Full Text] [Related]
17. Quantitative characterization of lignocellulosic biomass using surrogate mixtures and multivariate techniques. Krasznai DJ; Champagne P; Cunningham MF Bioresour Technol; 2012 Apr; 110():652-61. PubMed ID: 22342087 [TBL] [Abstract][Full Text] [Related]
18. Use of thermogravimetric analysis to monitor the effects of natural laccase mediators on flax pulp. Vila C; Barneto AG; Fillat A; Vidal T; Ariza J Bioresour Technol; 2011 Jun; 102(11):6554-61. PubMed ID: 21498071 [TBL] [Abstract][Full Text] [Related]
19. Comparison of dilute acid and ionic liquid pretreatment of switchgrass: Biomass recalcitrance, delignification and enzymatic saccharification. Li C; Knierim B; Manisseri C; Arora R; Scheller HV; Auer M; Vogel KP; Simmons BA; Singh S Bioresour Technol; 2010 Jul; 101(13):4900-6. PubMed ID: 19945861 [TBL] [Abstract][Full Text] [Related]
20. An advanced understanding of the specific effects of xylan and surface lignin contents on enzymatic hydrolysis of lignocellulosic biomass. Ju X; Engelhard M; Zhang X Bioresour Technol; 2013 Mar; 132():137-45. PubMed ID: 23395766 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]