BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 24750928)

  • 1. Study on the stability of β-carotene microencapsulated with pinhão (Araucaria angustifolia seeds) starch.
    Spada JC; Noreña CP; Marczak LD; Tessaro IC
    Carbohydr Polym; 2012 Aug; 89(4):1166-73. PubMed ID: 24750928
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microencapsulated β-carotene preparation using different drying treatments.
    Li XY; Wu MB; Xiao M; Lu SH; Wang ZM; Yao JM; Yang LR
    J Zhejiang Univ Sci B; 2019 Nov.; 20(11):901-909. PubMed ID: 31595726
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structures of octenylsuccinylated starches: effects on emulsions containing β-carotene.
    Sweedman MC; Hasjim J; Schäfer C; Gilbert RG
    Carbohydr Polym; 2014 Nov; 112():85-93. PubMed ID: 25129720
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hydrogel properties of non-conventional starches from guabiju, pinhão, and uvaia seeds.
    Dos Santos JS; Biduski B; Colussi R; Pinto VZ; Dos Santos LR
    Food Res Int; 2023 Nov; 173(Pt 1):113243. PubMed ID: 37803556
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stability of β-carotene microcapsules with Maillard reaction products derived from whey protein isolate and galactose as coating materials.
    Jiang ZM; Bai LN; Yang N; Feng ZB; Tian B
    J Zhejiang Univ Sci B; 2017 Oct.; 18(10):867-877. PubMed ID: 28990377
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Preparation and characterization of corn starch-β-carotene composites.
    Kim JY; Huber KC
    Carbohydr Polym; 2016 Jan; 136():394-401. PubMed ID: 26572369
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improving solubility and stability of β-carotene by microencapsulation in soluble complexes formed with whey protein and OSA-modified starch.
    Lin Q; Wu D; Singh H; Ye A
    Food Chem; 2021 Aug; 352():129267. PubMed ID: 33691207
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stability and bioaccessibility of β-carotene in nanoemulsions stabilized by modified starches.
    Liang R; Shoemaker CF; Yang X; Zhong F; Huang Q
    J Agric Food Chem; 2013 Feb; 61(6):1249-57. PubMed ID: 23331094
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Linking geographical origin with nutritional, mineral, and visual proprieties of pinhão (Araucaria angustifolia seed) from the south of Brazil.
    Malta DS; de Lima GG; Arantes MST; de Lacerda AEB; Mathias AL; Magalhães WLE; Helm CV; Masson ML
    J Food Sci; 2022 Oct; 87(10):4738-4750. PubMed ID: 36101022
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Intestine-Specific Delivery of Hydrophobic Bioactives from Oxidized Starch Microspheres with an Enhanced Stability.
    Wang S; Chen Y; Liang H; Chen Y; Shi M; Wu J; Liu X; Li Z; Liu B; Yuan Q; Li Y
    J Agric Food Chem; 2015 Oct; 63(39):8669-75. PubMed ID: 26414436
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Porosity and water activity effects on stability of crystalline β-carotene in freeze-dried solids.
    Harnkarnsujarit N; Charoenrein S; Roos YH
    J Food Sci; 2012 Nov; 77(11):E313-20. PubMed ID: 23094980
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Aerogels based on corn starch as carriers for pinhão coat extract (Araucaria angustifolia) rich in phenolic compounds for active packaging.
    Fonseca LM; Silva FTD; Bruni GP; Borges CD; Zavareze EDR; Dias ARG
    Int J Biol Macromol; 2021 Feb; 169():362-370. PubMed ID: 33340627
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chemical composition and glycemic index of Brazilian pine (Araucaria angustifolia) seeds.
    Cordenunsi BR; De Menezes Wenzel E; Genovese MI; Colli C; De Souza Gonçalves A; Lajolo FM
    J Agric Food Chem; 2004 Jun; 52(11):3412-6. PubMed ID: 15161207
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Araucaria angustifolia (Bertol.) Kuntze extract as a source of phenolic compounds in TPS/PBAT active films.
    Silva TBVD; Moreira TFM; de Oliveira A; Bilck AP; Gonçalves OH; Ferreira ICFR; Barros L; Barreiro MF; Yamashita F; Shirai MA; Leimann FV
    Food Funct; 2019 Dec; 10(12):7697-7706. PubMed ID: 31720644
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pinhão starch and coat extract as new natural cosmetic ingredients: Topical formulation stability and sensory analysis.
    Daudt RM; Back PI; Cardozo NS; Marczak LD; Külkamp-Guerreiro IC
    Carbohydr Polym; 2015 Dec; 134():573-80. PubMed ID: 26428160
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reversed phase HPLC analysis of stability and microstructural effects on degradation kinetics of β-carotene encapsulated in freeze-dried maltodextrin-emulsion systems.
    Harnkarnsujarit N; Charoenrein S; Roos YH
    J Agric Food Chem; 2012 Sep; 60(38):9711-8. PubMed ID: 22950885
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of β-amylolysis on the resistant starch formation of debranched corn starches.
    Luckett CR; Wang YJ
    J Agric Food Chem; 2012 May; 60(18):4751-7. PubMed ID: 22524584
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Saffron and beetroot extracts encapsulated in maltodextrin, gum Arabic, modified starch and chitosan: Incorporation in a chewing gum system.
    Chranioti C; Nikoloudaki A; Tzia C
    Carbohydr Polym; 2015 Aug; 127():252-63. PubMed ID: 25965482
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Red araçá pulp microencapsulation by hydrolyzed pinhão starch, and tara and arabic gums.
    Rosário FM; Biduski B; Santos DFD; Hadlish EV; Tormen L; Santos GHFD; Pinto VZ
    J Sci Food Agric; 2021 Mar; 101(5):2052-2062. PubMed ID: 32949154
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural and physicochemical properties of composites between starch nanoparticles and β-carotene prepared via nanoprecipitation.
    Lee DH; Kwon KS; Jeong D; Kim IH; Nam HS; Kim JY
    Int J Biol Macromol; 2022 Aug; 214():100-110. PubMed ID: 35705125
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.