These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 24751020)

  • 1. In vitro and in vivo theophylline release from cellulose/chondroitin sulfate hydrogels.
    Oprea AM; Nistor MT; Popa MI; Lupusoru CE; Vasile C
    Carbohydr Polym; 2012 Sep; 90(1):127-33. PubMed ID: 24751020
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Controlled release of tinidazole and theophylline from chitosan based composite hydrogels.
    Samanta HS; Ray SK
    Carbohydr Polym; 2014 Jun; 106():109-20. PubMed ID: 24721057
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hydrogels based on chitosan-xanthan for controlled release of theophylline.
    Popa N; Novac O; Profire L; Lupusoru CE; Popa MI
    J Mater Sci Mater Med; 2010 Apr; 21(4):1241-8. PubMed ID: 19924518
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Controlling methacryloyl substitution of chondroitin sulfate: injectable hydrogels with tunable long-term drug release profiles.
    Ornell KJ; Lozada D; Phan NV; Coburn JM
    J Mater Chem B; 2019 Apr; 7(13):2151-2161. PubMed ID: 32073574
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rheological behavior of biodegradable N-succinyl chitosan-g-poly (acrylic acid) hydrogels and their applications as drug carrier and in vitro theophylline release.
    Bashir S; Teo YY; Ramesh S; Ramesh K; Mushtaq MW
    Int J Biol Macromol; 2018 Oct; 117():454-466. PubMed ID: 29807081
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hyaluronic acid/chondroitin sulfate-based hydrogel prepared by gamma irradiation technique.
    Zhao L; Gwon HJ; Lim YM; Nho YC; Kim SY
    Carbohydr Polym; 2014 Feb; 102():598-605. PubMed ID: 24507324
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of chondroitin sulfate and its interpenetrating polymer network hydrogels for sustained-drug release.
    Wang SC; Chen BH; Wang LF; Chen JS
    Int J Pharm; 2007 Feb; 329(1-2):103-9. PubMed ID: 16996709
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of hydrogels prepared from copolymerization of the different degrees of methacrylate-grafted chondroitin sulfate macromers and acrylic acid.
    Tsai MF; Tsai HY; Peng YS; Wang LF; Chen JS; Lu SC
    J Biomed Mater Res A; 2008 Mar; 84(3):727-39. PubMed ID: 17635031
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hemicellulose-based pH-sensitive and biodegradable hydrogel for controlled drug delivery.
    Sun XF; Wang HH; Jing ZX; Mohanathas R
    Carbohydr Polym; 2013 Feb; 92(2):1357-66. PubMed ID: 23399165
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stimuli-responsive bacterial cellulose-g-poly(acrylic acid-co-acrylamide) hydrogels for oral controlled release drug delivery.
    Mohd Amin MC; Ahmad N; Pandey M; Jue Xin C
    Drug Dev Ind Pharm; 2014 Oct; 40(10):1340-9. PubMed ID: 23875787
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Injectable biopolymer based hydrogels for drug delivery applications.
    Atta S; Khaliq S; Islam A; Javeria I; Jamil T; Athar MM; Shafiq MI; Ghaffar A
    Int J Biol Macromol; 2015 Sep; 80():240-5. PubMed ID: 26118484
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Controlled immobilization of chondroitin sulfate in polyacrylic acid networks.
    Huang SJ; Wang JM; Tseng SC; Wang LF; Chen JS
    J Biomater Sci Polym Ed; 2007; 18(1):17-34. PubMed ID: 17274448
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Theophylline controlled-release formulations: in vivo-in vitro correlations.
    Yu Z; Schwartz JB; Sugita ET
    Biopharm Drug Dispos; 1996 Apr; 17(3):259-72. PubMed ID: 8983400
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In vitro and in vivo sustained-release characteristics of theophylline matrix tablets and novel cluster tablets.
    Hayashi T; Kanbe H; Okada M; Kawase I; Ikeda Y; Onuki Y; Kaneko T; Sonobe T
    Int J Pharm; 2007 Aug; 341(1-2):105-13. PubMed ID: 17512147
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In situ synthesis of magnetic CaraPVA IPN nanocomposite hydrogels and controlled drug release.
    Mahdavinia GR; Etemadi H
    Mater Sci Eng C Mater Biol Appl; 2014 Dec; 45():250-60. PubMed ID: 25491827
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improved drug delivery and accelerated diabetic wound healing by chondroitin sulfate grafted alginate-based thermoreversible hydrogels.
    Shah SA; Sohail M; Khan SA; Kousar M
    Mater Sci Eng C Mater Biol Appl; 2021 Jul; 126():112169. PubMed ID: 34082970
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthesis and characterization of some cellulose/chondroitin sulphate hydrogels and their evaluation as carriers for drug delivery.
    Oprea AM; Profire L; Lupusoru CE; Ghiciuc CM; Ciolacu D; Vasile C
    Carbohydr Polym; 2012 Jan; 87(1):721-729. PubMed ID: 34663027
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Controlled release of lipase from Candida rugosa loaded into hydrogels of N-isopropylacrylamide and itaconic acid.
    Milašinović N; Knežević-Jugović Z; Milosavljević N; Filipović J; Kalagasidis Krušić M
    Int J Pharm; 2012 Oct; 436(1-2):332-40. PubMed ID: 22759642
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Self-assembly of a swollen chitosan/chondroitin sulfate hydrogel by outward diffusion of the chondroitin sulfate chains.
    Piai JF; Rubira AF; Muniz EC
    Acta Biomater; 2009 Sep; 5(7):2601-9. PubMed ID: 19394902
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bacterial cellulose/acrylamide pH-sensitive smart hydrogel: development, characterization, and toxicity studies in ICR mice model.
    Pandey M; Mohamad N; Amin MC
    Mol Pharm; 2014 Oct; 11(10):3596-608. PubMed ID: 25157890
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.