These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
119 related articles for article (PubMed ID: 24751269)
21. Nanocomposite films based on xylan-rich hemicelluloses and cellulose nanofibers with enhanced mechanical properties. Peng XW; Ren JL; Zhong LX; Sun RC Biomacromolecules; 2011 Sep; 12(9):3321-9. PubMed ID: 21815695 [TBL] [Abstract][Full Text] [Related]
22. Effect of cellulosic fiber scale on linear and non-linear mechanical performance of starch-based composites. Karimi S; Abdulkhani A; Tahir PM; Dufresne A Int J Biol Macromol; 2016 Oct; 91():1040-4. PubMed ID: 27339322 [TBL] [Abstract][Full Text] [Related]
23. [Fabrication of collagen/sodium hyaluronate scaffold and its biological characteristics for cartilage tissue engineering]. Wu W; Mao T; Feng X Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2007 Apr; 21(4):401-5. PubMed ID: 17546888 [TBL] [Abstract][Full Text] [Related]
24. A new generation of sodium chloride porogen for tissue engineering. Tran RT; Naseri E; Kolasnikov A; Bai X; Yang J Biotechnol Appl Biochem; 2011; 58(5):335-44. PubMed ID: 21995536 [TBL] [Abstract][Full Text] [Related]
25. Fabrication and characterization of waterborne biodegradable polyurethanes 3-dimensional porous scaffolds for vascular tissue engineering. Jiang X; Yu F; Wang Z; Li J; Tan H; Ding M; Fu Q J Biomater Sci Polym Ed; 2010; 21(12):1637-52. PubMed ID: 20537246 [TBL] [Abstract][Full Text] [Related]
26. Fabrication and characterization of gelatin-based biocompatible porous composite scaffold for bone tissue engineering. Khan MN; Islam JM; Khan MA J Biomed Mater Res A; 2012 Nov; 100(11):3020-8. PubMed ID: 22707185 [TBL] [Abstract][Full Text] [Related]
27. Silk fibroin porous scaffolds for nucleus pulposus tissue engineering. Zeng C; Yang Q; Zhu M; Du L; Zhang J; Ma X; Xu B; Wang L Mater Sci Eng C Mater Biol Appl; 2014 Apr; 37():232-40. PubMed ID: 24582244 [TBL] [Abstract][Full Text] [Related]
28. Novel hydroxyethyl chitosan/cellulose scaffolds with bubble-like porous structure for bone tissue engineering. Wang Y; Qian J; Zhao N; Liu T; Xu W; Suo A Carbohydr Polym; 2017 Jul; 167():44-51. PubMed ID: 28433176 [TBL] [Abstract][Full Text] [Related]
29. [Experimental study on tissue engineered cartilage complex three-dimensional nano-scaffold with collagen type II and hyaluronic acid in vitro]. Yang Z; Chen Z; Liu K; Bai Y; Jiang T; Feng D; Feng G Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2013 Oct; 27(10):1240-5. PubMed ID: 24397139 [TBL] [Abstract][Full Text] [Related]
30. Mechanical and biological properties of hydroxyapatite/tricalcium phosphate scaffolds coated with poly(lactic-co-glycolic acid). Miao X; Tan DM; Li J; Xiao Y; Crawford R Acta Biomater; 2008 May; 4(3):638-45. PubMed ID: 18054297 [TBL] [Abstract][Full Text] [Related]
31. Porous PEOT/PBT scaffolds for bone tissue engineering: preparation, characterization, and in vitro bone marrow cell culturing. Claase MB; Grijpma DW; Mendes SC; De Bruijn JD; Feijen J J Biomed Mater Res A; 2003 Feb; 64(2):291-300. PubMed ID: 12522816 [TBL] [Abstract][Full Text] [Related]
32. A novel porous natural polymer scaffold for tissue engineering. Gong S; Dong J; Xue ST; Wang JY Conf Proc IEEE Eng Med Biol Soc; 2005; 2005():4884-7. PubMed ID: 17281337 [TBL] [Abstract][Full Text] [Related]
33. Physicochemical characterization and biocompatibility in vitro of biphasic calcium phosphate/polyvinyl alcohol scaffolds prepared by freeze-drying method for bone tissue engineering applications. Nie L; Chen D; Suo J; Zou P; Feng S; Yang Q; Yang S; Ye S Colloids Surf B Biointerfaces; 2012 Dec; 100():169-76. PubMed ID: 22766294 [TBL] [Abstract][Full Text] [Related]
34. [Fabrication and properties of a composite chitosan/type II collagen scaffold for tissue engineering cartilage]. Shi D; Cai D; Zhou C Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2005 Apr; 19(4):278-82. PubMed ID: 15921318 [TBL] [Abstract][Full Text] [Related]
35. Design and dynamic culture of 3D-scaffolds for cartilage tissue engineering. El-Ayoubi R; DeGrandpré C; DiRaddo R; Yousefi AM; Lavigne P J Biomater Appl; 2011 Jan; 25(5):429-44. PubMed ID: 20042429 [TBL] [Abstract][Full Text] [Related]
36. Study of gelatin-containing artificial skin V: fabrication of gelatin scaffolds using a salt-leaching method. Lee SB; Kim YH; Chong MS; Hong SH; Lee YM Biomaterials; 2005 May; 26(14):1961-8. PubMed ID: 15576170 [TBL] [Abstract][Full Text] [Related]
37. Tissue engineering of cartilage with porous polycarprolactone--alginate scaffold: the first report of tissue engineering in Thailand. Bunaprasert T; Thongmarongsri N; Thanakit V; Ruangvejvorachai P; Buranapraditkul S; Maneesri S; Kanokpanont S J Med Assoc Thai; 2006 Sep; 89 Suppl 3():S108-14. PubMed ID: 17718275 [TBL] [Abstract][Full Text] [Related]
38. Highly porous electrospun nanofibers enhanced by ultrasonication for improved cellular infiltration. Lee JB; Jeong SI; Bae MS; Yang DH; Heo DN; Kim CH; Alsberg E; Kwon IK Tissue Eng Part A; 2011 Nov; 17(21-22):2695-702. PubMed ID: 21682540 [TBL] [Abstract][Full Text] [Related]
39. Cellulose hydrogel with tunable shape and mechanical properties: From rigid cylinder to soft scaffold. Isobe N; Komamiya T; Kimura S; Kim UJ; Wada M Int J Biol Macromol; 2018 Oct; 117():625-631. PubMed ID: 29778880 [TBL] [Abstract][Full Text] [Related]
40. Generation of porous poly(ethylene glycol) hydrogels by salt leaching. Chiu YC; Larson JC; Isom A; Brey EM Tissue Eng Part C Methods; 2010 Oct; 16(5):905-12. PubMed ID: 19905877 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]