These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 24751269)

  • 41. Effect of self-assembled nanofibrous silk/polycaprolactone layer on the osteoconductivity and mechanical properties of biphasic calcium phosphate scaffolds.
    Roohani-Esfahani SI; Lu ZF; Li JJ; Ellis-Behnke R; Kaplan DL; Zreiqat H
    Acta Biomater; 2012 Jan; 8(1):302-12. PubMed ID: 22023750
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Poly(lactide-co-glycolide)/hydroxyapatite composite scaffolds for bone tissue engineering.
    Kim SS; Sun Park M; Jeon O; Yong Choi C; Kim BS
    Biomaterials; 2006 Mar; 27(8):1399-409. PubMed ID: 16169074
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Polyester scaffolds with bimodal pore size distribution for tissue engineering.
    Sosnowski S; Woźniak P; Lewandowska-Szumieł M
    Macromol Biosci; 2006 Jun; 6(6):425-34. PubMed ID: 16761274
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Porosity and mechanical properties relationship in PCL porous scaffolds.
    Guarino V; Causa F; Ambrosio L
    J Appl Biomater Biomech; 2007; 5(3):149-57. PubMed ID: 20799184
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Morphology and properties of poly vinyl alcohol (PVA) scaffolds: impact of process variables.
    Ye M; Mohanty P; Ghosh G
    Mater Sci Eng C Mater Biol Appl; 2014 Sep; 42():289-94. PubMed ID: 25063121
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Evaluation of smooth muscle cell response using two types of porous polylactide scaffolds with differing pore topography.
    McGlohorn JB; Holder WD; Grimes LW; Thomas CB; Burg KJ
    Tissue Eng; 2004; 10(3-4):505-14. PubMed ID: 15165467
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Thermoplastic starch foamed composites reinforced with cellulose nanofibers: Thermal and mechanical properties.
    Ghanbari A; Tabarsa T; Ashori A; Shakeri A; Mashkour M
    Carbohydr Polym; 2018 Oct; 197():305-311. PubMed ID: 30007618
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Mechanical properties of highly porous PEEK bionanocomposites incorporated with carbon and hydroxyapatite nanoparticles for scaffold applications.
    Uddin MN; Dhanasekaran PS; Asmatulu R
    Prog Biomater; 2019 Sep; 8(3):211-221. PubMed ID: 31630375
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Controlling the degradation of cellulose scaffolds with Malaprade oxidation for tissue engineering.
    Chimpibul W; Nakaji-Hirabayashi T; Yuan X; Matsumura K
    J Mater Chem B; 2020 Sep; 8(35):7904-7913. PubMed ID: 32812617
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A facile synthesis method of hydroxyethyl cellulose-silver nanoparticle scaffolds for skin tissue engineering applications.
    Zulkifli FH; Hussain FSJ; Zeyohannes SS; Rasad MSBA; Yusuff MM
    Mater Sci Eng C Mater Biol Appl; 2017 Oct; 79():151-160. PubMed ID: 28629002
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Regression Analysis of the Dielectric and Morphological Properties for Porous Nanohydroxyapatite/Starch Composites: A Correlative Study.
    Beh CY; Cheng EM; Mohd Nasir NF; Abdul Majid MS; Khor SF; Mohd Jamir MR; Mohd Tarmizi EZ; Lee KY
    Int J Mol Sci; 2022 May; 23(10):. PubMed ID: 35628505
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Bacterial Polyglucuronic Acid/Alginate/Carbon Nanofibers Hydrogel Nanocomposite as a Potential Scaffold for Bone Tissue Engineering.
    Dibazar ZE; Mohammadpour M; Samadian H; Zare S; Azizi M; Hamidi M; Elboutachfaiti R; Petit E; Delattre C
    Materials (Basel); 2022 Mar; 15(7):. PubMed ID: 35407826
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Physical and degradation properties of PLGA scaffolds fabricated by salt fusion technique.
    Mekala NK; Baadhe RR; Parcha SR; Yalavarthy PD
    J Biomed Res; 2013 Jul; 27(4):318-25. PubMed ID: 23885272
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Novel porous calcium aluminate/phosphate nanocomposites: in situ synthesis, microstructure and permeability.
    Yang J; Hu X; Huang J; Chen K; Huang Z; Liu Y; Fang M; Sun X
    Nanoscale; 2016 Feb; 8(6):3599-606. PubMed ID: 26805036
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Coherent-Interface-Assembled Ag
    Lu Y; Liu H; Gao R; Xiao S; Zhang M; Yin Y; Wang S; Li J; Yang D
    ACS Appl Mater Interfaces; 2016 Oct; 8(42):29179-29185. PubMed ID: 27709878
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Aerogel microspheres from natural cellulose nanofibrils and their application as cell culture scaffold.
    Cai H; Sharma S; Liu W; Mu W; Liu W; Zhang X; Deng Y
    Biomacromolecules; 2014 Jul; 15(7):2540-7. PubMed ID: 24894125
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Superior mechanical performance of highly porous, anisotropic nanocellulose-montmorillonite aerogels prepared by freeze casting.
    Donius AE; Liu A; Berglund LA; Wegst UG
    J Mech Behav Biomed Mater; 2014 Sep; 37():88-99. PubMed ID: 24905177
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Fabrication of Highly Interconnected Poly(ε-caprolactone)/cellulose Nanofiber Composite Foams by Microcellular Foaming and Leaching Processes.
    Li J; Wang H; Zhou H; Jiang J; Wang X; Li Q
    ACS Omega; 2021 Sep; 6(35):22672-22680. PubMed ID: 34514238
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Agarose particle-templated porous bacterial cellulose and its application in cartilage growth in vitro.
    Yin N; Stilwell MD; Santos TMA; Wang H; Weibel DB
    Acta Biomater; 2015 Jan; 12():129-138. PubMed ID: 25449918
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Preparation and Reinforcement of Dual-Porous Biocompatible Cellulose Scaffolds for Tissue Engineering.
    Pircher N; Fischhuber D; Carbajal L; Strauß C; Nedelec JM; Kasper C; Rosenau T; Liebner F
    Macromol Mater Eng; 2015 Sep; 300(9):911-924. PubMed ID: 26941565
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.