These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 24751297)

  • 1. Estrogen degradation and sorption onto colloids in a constructed wetland with different hydraulic retention times.
    Chen TC; Yeh KJ; Kuo WC; Chao HR; Sheu SC
    J Hazard Mater; 2014 Jul; 277():62-8. PubMed ID: 24751297
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The fate of estrogenic compounds in the aquatic environment: sorption onto organic colloids.
    Yamamoto H; Liljestrand HM
    Water Sci Technol; 2003; 47(9):77-84. PubMed ID: 12830944
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bioaugmentation Mitigates the Impact of Estrogen on Coliform-Grazing Protozoa in Slow Sand Filters.
    Haig SJ; Gauchotte-Lindsay C; Collins G; Quince C
    Environ Sci Technol; 2016 Mar; 50(6):3101-10. PubMed ID: 26895622
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High estrogen concentrations in receiving river discharge from a concentrated livestock feedlot.
    Chen TS; Chen TC; Yeh KJ; Chao HR; Liaw ET; Hsieh CY; Chen KC; Hsieh LT; Yeh YL
    Sci Total Environ; 2010 Jul; 408(16):3223-30. PubMed ID: 20451953
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Processes for the elimination of estrogenic steroid hormones from water: a review.
    Silva CP; Otero M; Esteves V
    Environ Pollut; 2012 Jun; 165():38-58. PubMed ID: 22402263
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Occurrence of estrogens in sewage sludge and their fate during plant-scale anaerobic digestion.
    Muller M; Combalbert S; Delgenès N; Bergheaud V; Rocher V; Benoît P; Delgenès JP; Patureau D; Hernandez-Raquet G
    Chemosphere; 2010 Sep; 81(1):65-71. PubMed ID: 20673956
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Calculation methods to perform mass balance of endocrine disrupting compounds in a submerged membrane bioreactor: fate and distribution of estrogens during the biological treatment.
    Estrada-Arriaga EB; Mijaylova P
    Water Sci Technol; 2011; 64(11):2158-68. PubMed ID: 22156118
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A review of separation methods for the determination of estrogens and plastics-derived estrogen mimics from aqueous systems.
    LaFleur AD; Schug KA
    Anal Chim Acta; 2011 Jun; 696(1-2):6-26. PubMed ID: 21621029
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Efficiencies of freshwater and estuarine constructed wetlands for phenolic endocrine disruptor removal in Taiwan.
    Hsieh CY; Yang L; Kuo WC; Zen YP
    Sci Total Environ; 2013 Oct; 463-464():182-91. PubMed ID: 23807020
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Factors Affecting Behavior of Phenolic Endocrine Disruptors, Estrone and Estradiol, in Constructed Wetlands for Domestic Sewage Treatment.
    Dai YN; A D; Yang Y; Tam NF; Tai YP; Tang XY
    Environ Sci Technol; 2016 Nov; 50(21):11844-11852. PubMed ID: 27723316
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Occurrence and removal of endocrine disrupting chemicals in wastewater.
    Zhang Y; Zhou JL
    Chemosphere; 2008 Oct; 73(5):848-53. PubMed ID: 18667225
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Removal of estrogens by electrochemical oxidation process.
    Cong VH; Iwaya S; Sakakibara Y
    J Environ Sci (China); 2014 Jun; 26(6):1355-60. PubMed ID: 25079848
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Removal of veterinary antibiotics, alkylphenolic compounds, and estrogens from the Wuluo constructed wetland in southern Taiwan.
    Hsieh CY; Liaw ET; Fan KM
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2015; 50(2):151-60. PubMed ID: 25560261
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Removal of estrogens from water using activated carbon and ozone.
    Ogata F; Tominaga H; Yabutani H; Kawasaki N
    J Oleo Sci; 2011; 60(12):609-11. PubMed ID: 22123241
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sorptive removal of endocrine-disruptive compound (estriol, E3) from aqueous phase by batch and column studies: kinetic and mechanistic evaluation.
    Kumar AK; Mohan SV; Sarma PN
    J Hazard Mater; 2009 May; 164(2-3):820-8. PubMed ID: 18848393
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fluctuations in natural and synthetic estrogen concentrations in a tidal estuary in south-eastern Australia.
    Ferguson EM; Allinson M; Allinson G; Swearer SE; Hassell KL
    Water Res; 2013 Mar; 47(4):1604-15. PubMed ID: 23305682
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Association between urinary levels of bisphenol-A and estrogen metabolism in Korean adults.
    Kim EJ; Lee D; Chung BC; Pyo H; Lee J
    Sci Total Environ; 2014 Feb; 470-471():1401-7. PubMed ID: 23954212
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Occurrence and removal of estrogens, progesterone and testosterone in three constructed wetlands treating municipal sewage in the Czech Republic.
    Vymazal J; Březinová T; Koželuh M
    Sci Total Environ; 2015 Dec; 536():625-631. PubMed ID: 26247691
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Occurrence and removal of endocrine-disrupting chemicals in wastewater treatment plants in the Three Gorges Reservoir area, Chongqing, China.
    Ye X; Guo X; Cui X; Zhang X; Zhang H; Wang MK; Qiu L; Chen S
    J Environ Monit; 2012 Aug; 14(8):2204-11. PubMed ID: 22695474
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Levels of six estrogens in water and sediment from three rivers in Tianjin area, China.
    Lei B; Huang S; Zhou Y; Wang D; Wang Z
    Chemosphere; 2009 Jun; 76(1):36-42. PubMed ID: 19303134
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.