BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 2475133)

  • 1. Semisynthesis of Arg15, Glu15, Met15, and Nle15-aprotinin involving enzymatic peptide bond resynthesis.
    Beckmann J; Mehlich A; Schröder W; Wenzel HR; Tschesche H
    J Protein Chem; 1989 Feb; 8(1):101-13. PubMed ID: 2475133
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Preparation of chemically 'mutated' aprotinin homologues by semisynthesis. P1 substitutions change inhibitory specificity.
    Beckmann J; Mehlich A; Schröder W; Wenzel HR; Tschesche H
    Eur J Biochem; 1988 Oct; 176(3):675-82. PubMed ID: 2458925
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enzymatic semisynthesis of aprotinin homologues mutated in P' positions.
    Groeger C; Wenzel HR; Tschesche H
    J Protein Chem; 1991 Apr; 10(2):245-51. PubMed ID: 1718310
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chemical semisynthesis of aprotinin homologues and derivatives mutated in P' positions.
    Groeger C; Wenzel HR; Tschesche H
    J Protein Chem; 1991 Oct; 10(5):527-33. PubMed ID: 1724726
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Aprotinin derivatives with chromophoric leaving groups can be used as highly selective active-site titrants for serine proteinases and permit the determination of kinetic constants of enzyme-inhibitor complexes.
    Mehlich A; Beckmann J; Wenzel HR; Tschesche H
    Biochim Biophys Acta; 1988 Dec; 957(3):420-9. PubMed ID: 2461739
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Selective oxidation of methionine residues in Kunitz-type protease inhibitors.
    Concetti A; Angeletti M; Fioretti E; Ascoli F
    Biol Chem Hoppe Seyler; 1989 Jul; 370(7):723-8. PubMed ID: 2476160
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Replacement of lysine by arginine, phenylalanine and tryptophan in the reactive site of the bovine trypsin-kallikrein inhibitor (Kunitz) and change of the inhibitory properties.
    Jering H; Tschesche H
    Eur J Biochem; 1976 Jan; 61(2):453-63. PubMed ID: 129327
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The pH dependence of the equilibrium constant KHyd for the hydrolysis of the Lys15-Ala16 reactive-site peptide bond in bovine pancreatic trypsin inhibitor (aprotinin).
    Siekmann J; Wenzel HR; Matuszak E; von Goldammer E; Tschesche H
    J Protein Chem; 1988 Oct; 7(5):633-40. PubMed ID: 2475132
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Proteinase catalyzed resynthesis of the peptide bond Lys 15--Ala 16 in the derivative of trypsin-kallikrein inhibitor (Kunitz) with this peptide bond hydrolyzed.
    Jering H; Tschesche H
    Angew Chem Int Ed Engl; 1974 Oct; 13(10):661-2. PubMed ID: 4215342
    [No Abstract]   [Full Text] [Related]  

  • 10. Semisynthetic aprotinin derivatives with specific alterations at the reactive-site peptide bond can be used to study structure-function relationships.
    Mehlich A; Beckmann J; Wenzel HR; Tschesche H
    Biochim Biophys Acta; 1989 Jun; 996(1-2):23-9. PubMed ID: 2472174
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chemical-enzymatic insertion of an amino acid residue in the reactive site of soybean trypsin inhibitor (Kunitz).
    Kowalski D; Laskowski M
    Biochemistry; 1976 Mar; 15(6):1309-15. PubMed ID: 1252450
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enzymatic resynthesis of the "reactive site" bond in the modified aprotinin derivatives [seco-15/16]aprotinin and [Di-seco-15/16,39/40]aprotinin.
    Schnabel E; Reinhardt G; Schröder W; Tschesche H; Wenzel HR; Mehlich A
    Biol Chem Hoppe Seyler; 1988 Jun; 369(6):461-8. PubMed ID: 2462426
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Purification of a lysinonorleucine cross-linked peptide fraction from porcine aorta elastin.
    Davril M; Han KK
    Int J Pept Protein Res; 1976; 8(2):177-81. PubMed ID: 1270189
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of unusual replacement of methionine by norleucine in recombinant interleukin-2 produced by E. coli.
    Lu HS; Tsai LB; Kenney WC; Lai PH
    Biochem Biophys Res Commun; 1988 Oct; 156(2):807-13. PubMed ID: 3056404
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The reactive sites of Kunitz bovine-trypsin inhibitor. Role of lysine-15 in the interaction with chymotrypsin.
    Chauvet J; Acher R
    Eur J Biochem; 1975 May; 54(1):31-8. PubMed ID: 238847
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Crystal structures of bovine chymotrypsin and trypsin complexed to the inhibitor domain of Alzheimer's amyloid beta-protein precursor (APPI) and basic pancreatic trypsin inhibitor (BPTI): engineering of inhibitors with altered specificities.
    Scheidig AJ; Hynes TR; Pelletier LA; Wells JA; Kossiakoff AA
    Protein Sci; 1997 Sep; 6(9):1806-24. PubMed ID: 9300481
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inhibition mechanism of a peanut trypsin-chymotrypsin inhibitor, B-III: determination of the reactive sites for trypsin and chymotrypsin.
    Norioka S; Ikenaka T
    J Biochem; 1984 Oct; 96(4):1155-64. PubMed ID: 6520118
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Arginine modification in Kunitz bovine trypsin inhibitor through 1, 2-cyclohexanedione.
    Menegatti E; Ferroni R; Benassi CA; Rocchi R
    Int J Pept Protein Res; 1977; 10(2):146-52. PubMed ID: 302243
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Localisation of the three amino acid exchanges in the coat-protein of TMV-06.
    Gallwitz U
    FEBS Lett; 1973 Aug; 34(2):270-2. PubMed ID: 4747845
    [No Abstract]   [Full Text] [Related]  

  • 20. Pyroglutamyl-aprotinin, a new aprotinin homologue from bovine lungs--isolation, properties, sequence analysis and characterization using 1H nuclear magnetic resonance in solution.
    Siekmann J; Wenzel HR; Schröder W; Schutt H; Truscheit E; Arens A; Rauenbusch E; Chazin WJ; Wüthrich K; Tschesche H
    Biol Chem Hoppe Seyler; 1987 Dec; 368(12):1589-96. PubMed ID: 2450551
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.