These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
205 related articles for article (PubMed ID: 24751490)
1. In situ stabilization of As and Sb with naturally occurring Mn, Al and Fe oxides in a calcareous soil: bioaccessibility, bioavailability and speciation studies. Bagherifam S; Lakzian A; Fotovat A; Khorasani R; Komarneni S J Hazard Mater; 2014 May; 273():247-52. PubMed ID: 24751490 [TBL] [Abstract][Full Text] [Related]
2. The impact of sequestration on the bioaccessibility of arsenic in long-term contaminated soils. Smith E; Naidu R; Weber J; Juhasz AL Chemosphere; 2008 Mar; 71(4):773-80. PubMed ID: 18023842 [TBL] [Abstract][Full Text] [Related]
3. Fast and efficient remediation of antimony-contaminated surface water and field soil using alumina supported Fe-Mn binary oxide. Gong Y; Bai Y; Ye P; Li H Chemosphere; 2024 Sep; 364():143165. PubMed ID: 39181457 [TBL] [Abstract][Full Text] [Related]
4. Chemical stabilization of metals and arsenic in contaminated soils using oxides--a review. Komárek M; Vaněk A; Ettler V Environ Pollut; 2013 Jan; 172():9-22. PubMed ID: 22982549 [TBL] [Abstract][Full Text] [Related]
5. Arsenic fractionation and bioaccessibility in two alkaline Texas soils incubated with sodium arsenate. Datta R; Makris KC; Sarkar D Arch Environ Contam Toxicol; 2007 May; 52(4):475-82. PubMed ID: 17387422 [TBL] [Abstract][Full Text] [Related]
6. Mitigating arsenic accumulation in rice (Oryza sativa L.) from typical arsenic contaminated paddy soil of southern China using nanostructured α-MnO Li B; Zhou S; Wei D; Long J; Peng L; Tie B; Williams PN; Lei M Sci Total Environ; 2019 Feb; 650(Pt 1):546-556. PubMed ID: 30205344 [TBL] [Abstract][Full Text] [Related]
7. Bioaccessible and non-bioaccessible fractions of soil arsenic. Whitacre SD; Basta NT; Dayton EA J Environ Sci Health A Tox Hazard Subst Environ Eng; 2013; 48(6):620-8. PubMed ID: 23442113 [TBL] [Abstract][Full Text] [Related]
8. Pteris vittata continuously removed arsenic from non-labile fraction in three contaminated-soils during 3.5 years of phytoextraction. Lessl JT; Luo J; Ma LQ J Hazard Mater; 2014 Aug; 279():485-92. PubMed ID: 25108101 [TBL] [Abstract][Full Text] [Related]
9. Evaluation of amendments to reduce arsenic and antimony leaching from co-contaminated soils. Doherty SJ; Tighe MK; Wilson SC Chemosphere; 2017 May; 174():208-217. PubMed ID: 28167352 [TBL] [Abstract][Full Text] [Related]
10. Effect of biosolid incorporation on arsenic distribution in Mollisol soils in central Chile. Ascar L; Ahumada I; Richter P Chemosphere; 2008 Jan; 70(7):1211-7. PubMed ID: 17889255 [TBL] [Abstract][Full Text] [Related]
11. The pH-dependent long-term stability of an amorphous manganese oxide in smelter-polluted soils: implication for chemical stabilization of metals and metalloids. Ettler V; Tomášová Z; Komárek M; Mihaljevič M; Šebek O; Michálková Z J Hazard Mater; 2015 Apr; 286():386-94. PubMed ID: 25600581 [TBL] [Abstract][Full Text] [Related]
12. Decreasing arsenic bioaccessibility/bioavailability in soils with iron amendments. Subacz JL; Barnett MO; Jardine PM; Stewart MA J Environ Sci Health A Tox Hazard Subst Environ Eng; 2007 Jul; 42(9):1317-29. PubMed ID: 17654151 [TBL] [Abstract][Full Text] [Related]
13. Arsenic stabilization by zero-valent iron, bauxite residue, and zeolite at a contaminated site planting Panax notoginseng. Yan XL; Lin LY; Liao XY; Zhang WB; Wen Y Chemosphere; 2013 Oct; 93(4):661-7. PubMed ID: 23871591 [TBL] [Abstract][Full Text] [Related]
14. The desorption of antimony(V) from sediments, hydrous oxides, and clay minerals by carbonate, phosphate, sulfate, nitrate, and chloride. Biver M; Krachler M; Shotyk W J Environ Qual; 2011; 40(4):1143-52. PubMed ID: 21712584 [TBL] [Abstract][Full Text] [Related]
15. Effect of biogeochemical interactions on bioaccessibility of arsenic in soils of a former smelter site in Republic of Korea. Yang K; Jeong S; Jho EH; Nam K Environ Geochem Health; 2016 Dec; 38(6):1347-1354. PubMed ID: 26769492 [TBL] [Abstract][Full Text] [Related]
16. Effect of soil organic matter on antimony bioavailability after the remediation process. Nakamaru YM; Martín Peinado FJ Environ Pollut; 2017 Sep; 228():425-432. PubMed ID: 28554032 [TBL] [Abstract][Full Text] [Related]
17. Bioaccessibility of antimony and arsenic in highly polluted soils of the mine area and health risk assessment associated with oral ingestion exposure. Li J; Wei Y; Zhao L; Zhang J; Shangguan Y; Li F; Hou H Ecotoxicol Environ Saf; 2014 Dec; 110():308-15. PubMed ID: 25437466 [TBL] [Abstract][Full Text] [Related]
18. The influence of different antimony (Sb) compounds and ageing on bioavailability and fractionation of antimony in two dissimilar soils. Bagherifam S; Brown TC; Wijayawardena A; Naidu R Environ Pollut; 2021 Feb; 270():116270. PubMed ID: 33341553 [TBL] [Abstract][Full Text] [Related]
19. Evaluation of different amendments to stabilize antimony in mining polluted soils. Álvarez-Ayuso E; Otones V; Murciego A; García-Sánchez A Chemosphere; 2013 Feb; 90(8):2233-9. PubMed ID: 23121985 [TBL] [Abstract][Full Text] [Related]
20. Bioaccessibility, solid phase distribution, and speciation of Sb in soils and in digestive fluids. Denys S; Tack K; Caboche J; Delalain P Chemosphere; 2009 Feb; 74(5):711-6. PubMed ID: 19027930 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]