These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
205 related articles for article (PubMed ID: 24751490)
21. Evaluation of various chemical extraction methods to estimate plant-available arsenic in mine soils. Anawar HM; Garcia-Sanchez A; Santa Regina I Chemosphere; 2008 Feb; 70(8):1459-67. PubMed ID: 17936872 [TBL] [Abstract][Full Text] [Related]
22. Investigation on reusing water treatment residuals to remedy soil contaminated with multiple metals in Baiyin, China. Wang C; Zhao Y; Pei Y J Hazard Mater; 2012 Oct; 237-238():240-6. PubMed ID: 22954606 [TBL] [Abstract][Full Text] [Related]
23. Synergistic effects of the combination of oxalate and ascorbate on arsenic extraction from contaminated soils. Lee JC; Kim EJ; Baek K Chemosphere; 2017 Feb; 168():1439-1446. PubMed ID: 27923505 [TBL] [Abstract][Full Text] [Related]
24. Effective stabilization of arsenic in contaminated soils with biogenic manganese oxide (BMO) materials. Wang YN; Tsang YF; Wang H; Sun Y; Song Y; Pan X; Luo S Environ Pollut; 2020 Mar; 258():113481. PubMed ID: 31859124 [TBL] [Abstract][Full Text] [Related]
25. Arsenic-containing soil from geogenic source in Hong Kong: Leaching characteristics and stabilization/solidification. Li JS; Beiyuan J; Tsang DCW; Wang L; Poon CS; Li XD; Fendorf S Chemosphere; 2017 Sep; 182():31-39. PubMed ID: 28486153 [TBL] [Abstract][Full Text] [Related]
26. Arsenic speciation and bioaccessibility in arsenic-contaminated soils: sequential extraction and mineralogical investigation. Kim EJ; Yoo JC; Baek K Environ Pollut; 2014 Mar; 186():29-35. PubMed ID: 24361561 [TBL] [Abstract][Full Text] [Related]
27. Immobilization of As(III) in soil and groundwater using a new class of polysaccharide stabilized Fe-Mn oxide nanoparticles. An B; Zhao D J Hazard Mater; 2012 Apr; 211-212():332-41. PubMed ID: 22119304 [TBL] [Abstract][Full Text] [Related]
28. Potential negative consequences of adding phosphorus-based fertilizers to immobilize lead in soil. Kilgour DW; Moseley RB; Barnett MO; Savage KS; Jardine PM J Environ Qual; 2008; 37(5):1733-40. PubMed ID: 18689734 [TBL] [Abstract][Full Text] [Related]
29. Evaluation of the effectiveness of in situ stabilization in the field aged arsenic-contaminated soil: Chemical extractability and biological response. An J; Jeong B; Nam K J Hazard Mater; 2019 Apr; 367():137-143. PubMed ID: 30594712 [TBL] [Abstract][Full Text] [Related]
30. Effect of soil properties on arsenic fractionation and bioaccessibility in cattle and sheep dipping vat sites. Sarkar D; Makris KC; Parra-Noonan MT; Datta R Environ Int; 2007 Feb; 33(2):164-9. PubMed ID: 17034861 [TBL] [Abstract][Full Text] [Related]
31. Effect of aging on arsenic and lead fractionation and availability in soils: coupling sequential extractions with diffusive gradients in thin-films technique. Liang S; Guan DX; Ren JH; Zhang M; Luo J; Ma LQ J Hazard Mater; 2014 May; 273():272-9. PubMed ID: 24751493 [TBL] [Abstract][Full Text] [Related]
32. Evaluation of different phosphate amendments on availability of metals in contaminated soil. Chen S; Xu M; Ma Y; Yang J Ecotoxicol Environ Saf; 2007 Jun; 67(2):278-85. PubMed ID: 16887186 [TBL] [Abstract][Full Text] [Related]
33. Effects of calcium peroxide on arsenic uptake by celery (Apium graveolens L.) grown in arsenic contaminated soil. Liu CP; Luo CL; Xu XH; Wu CA; Li FB; Zhang G Chemosphere; 2012 Mar; 86(11):1106-11. PubMed ID: 22226367 [TBL] [Abstract][Full Text] [Related]
34. Assessment of oral bioaccessibility of arsenic in playground soil in Madrid (Spain): a three-method comparison and implications for risk assessment. Mingot J; De Miguel E; Chacón E Chemosphere; 2011 Sep; 84(10):1386-91. PubMed ID: 21601908 [TBL] [Abstract][Full Text] [Related]
35. Sequential soil washing techniques using hydrochloric acid and sodium hydroxide for remediating arsenic-contaminated soils in abandoned iron-ore mines. Jang M; Hwang JS; Choi SI Chemosphere; 2007 Jan; 66(1):8-17. PubMed ID: 16831457 [TBL] [Abstract][Full Text] [Related]
36. Food crop accumulation and bioavailability assessment for antimony (Sb) compared with arsenic (As) in contaminated soils. Wilson SC; Tighe M; Paterson E; Ashley PM Environ Sci Pollut Res Int; 2014 Oct; 21(20):11671-81. PubMed ID: 24499989 [TBL] [Abstract][Full Text] [Related]
37. Iron amendments to reduce bioaccessible arsenic. Cutler WG; El-Kadi A; Hue NV; Peard J; Scheckel K; Ray C J Hazard Mater; 2014 Aug; 279():554-61. PubMed ID: 25113516 [TBL] [Abstract][Full Text] [Related]
38. DGT and selective extractions reveal differences in arsenic and antimony uptake by the white icicle radish (Raphanus sativus). Ngo LK; Price HL; Bennett WW; Teasdale PR; Jolley DF Environ Pollut; 2020 Apr; 259():113815. PubMed ID: 31884210 [TBL] [Abstract][Full Text] [Related]
39. Arsenic bioaccessibility in CCA-contaminated soils: influence of soil properties, arsenic fractionation, and particle-size fraction. Girouard E; Zagury GJ Sci Total Environ; 2009 Apr; 407(8):2576-85. PubMed ID: 19211134 [TBL] [Abstract][Full Text] [Related]
40. Comparison of in vivo and in vitro methodologies for the assessment of arsenic bioavailability in contaminated soils. Juhasz AL; Smith E; Weber J; Rees M; Rofe A; Kuchel T; Sansom L; Naidu R Chemosphere; 2007 Oct; 69(6):961-6. PubMed ID: 17585998 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]