These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 2475167)

  • 21. 6-ketocholestanol abolishes the effect of the most potent uncouplers of oxidative phosphorylation in mitochondria.
    Starkov AA; Dedukhova VI; Skulachev VP
    FEBS Lett; 1994 Dec; 355(3):305-8. PubMed ID: 7988694
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Uncoupling of oxidative phosphorylation. 1. Protonophoric effects account only partially for uncoupling.
    Luvisetto S; Pietrobon D; Azzone GF
    Biochemistry; 1987 Nov; 26(23):7332-8. PubMed ID: 2827753
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Simultaneous synthesis and hydrolysis of ATP regulated by the inhibitor protein in submitochondrial particles.
    Beltrán C; Tuena de Gómez-Puyou M; Darszon A; Gómez-Puyou A
    Eur J Biochem; 1986 Oct; 160(1):163-8. PubMed ID: 3021449
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Inhibition by trifluoperazine of ATP synthesis and hydrolysis by particulate and soluble mitochondrial F1: competition with H2PO4-.
    García JJ; Tuena de Gómez-Puyou M; Gómez-Puyou A
    J Bioenerg Biomembr; 1995 Feb; 27(1):127-36. PubMed ID: 7629044
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Studies of energy-linked reactions: stimulation of the mitochondrial Pi-ATP exchange reaction by oleoyl lipoate, oleoyl CoA and oleoyl phosphate.
    Hyams RL; Griffiths DE
    Biochem Biophys Res Commun; 1978 Jan; 80(1):104-11. PubMed ID: 341892
    [No Abstract]   [Full Text] [Related]  

  • 26. Dihydrolipoic acid activates oligomycin-sensitive thiol groups and increases ATP synthesis in mitochondria.
    Zimmer G; Mainka L; Krüger E
    Arch Biochem Biophys; 1991 Aug; 288(2):609-13. PubMed ID: 1832845
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Inactive to active transitions of the mitochondrial ATPase complex as controlled by the ATPase inhibitor.
    Gómez-Puyou A; de Gómez-Puyou MT; Ernster L
    Biochim Biophys Acta; 1979 Aug; 547(2):252-7. PubMed ID: 157162
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Oxidative phosphorylation and the Pi-ATP exchange reaction of submitochondrial particles under the influence of organic solvents.
    Tuena de Gómez-Puyou M; Ayala G; Darszon A; Gómez-Puyou A
    J Biol Chem; 1984 Aug; 259(15):9472-8. PubMed ID: 6746656
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Enhancement of hydrogen peroxide formation by protophores and ionophores in antimycin-supplemented mitochondria.
    Cadenas E; Boveris A
    Biochem J; 1980 Apr; 188(1):31-7. PubMed ID: 7406888
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Estimation of the turnover number of bovine heart F0F1 complexes for ATP synthesis.
    Matsuno-Yagi A; Hatefi Y
    Biochemistry; 1988 Jan; 27(1):335-40. PubMed ID: 2894847
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [A correlation between respiration and synthesis of ATP in mitochondria at different degree of uncoupling of oxidative phosphorylation].
    Samartsev VN; Kozhina OV; Polishchuk LS
    Biofizika; 2005; 50(4):660-7. PubMed ID: 16212057
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effect of monovalent cation ionophores on lymphocyte cellular metabolism.
    Arslan P; Montecucco C; Celi D; Pozzan T
    Biochim Biophys Acta; 1981 Apr; 643(1):177-81. PubMed ID: 6165389
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Inhibitory chemical modifications of F1-ATPase: effects on the kinetics of adenosine 5'-triphosphate synthesis and hydrolysis in reconstituted systems.
    Matsuno-Yagi A; Hatefi Y
    Biochemistry; 1984 Jul; 23(15):3508-14. PubMed ID: 6235851
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Calcium inhibition of the ATP in equilibrium with [32P]Pi exchange and of net ATP synthesis catalyzed by bovine submitochondrial particles.
    Vercesi AE; Hermes-Lima M; Meyer-Fernandes JR; Vieyra A
    Biochim Biophys Acta; 1990 Oct; 1020(1):101-6. PubMed ID: 2145974
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Local protons and uncoupling of aerobic and artificial delta muH-driven ATP synthesis.
    Luvisetto S; Azzone GF
    Biochemistry; 1989 Feb; 28(3):1109-16. PubMed ID: 2469465
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Anion and amine uptake and uncoupling in submitochondrial particles.
    Azzone GF; Gutweniger H; Viola E; Strinna E; Massari S; Colonna R
    Eur J Biochem; 1976 Feb; 62(1):77-86. PubMed ID: 2477
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Studies on the mechanism of oxidative phosphorylation. Positive cooperativity in ATP synthesis.
    Matsuno-Yagi A; Hatefi Y
    J Biol Chem; 1990 Jan; 265(1):82-8. PubMed ID: 2294123
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Nature of proton cycling during gramicidin uncoupling of oxidative phosphorylation.
    Luvisetto S; Azzone GF
    Biochemistry; 1989 Feb; 28(3):1100-8. PubMed ID: 2469464
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effects of tricyclic antidepressant drugs on energy-linked reactions in mitochondria.
    Weinbach EC; Costa JL; Nelson BD; Claggett CE; Hundal T; Bradley D; Morris SJ
    Biochem Pharmacol; 1986 May; 35(9):1445-51. PubMed ID: 2939836
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Demonstration and quantitation of catalytic and noncatalytic bound ATP in submitochondrial particles during oxidative phosphorylation.
    Gresser M; Cardon J; Rosen G; Boyer PD
    J Biol Chem; 1979 Nov; 254(21):10649-53. PubMed ID: 159294
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.