These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

250 related articles for article (PubMed ID: 24752231)

  • 1. Deformation and dynamics of red blood cells in flow through cylindrical microchannels.
    Fedosov DA; Peltomäki M; Gompper G
    Soft Matter; 2014 Jun; 10(24):4258-67. PubMed ID: 24752231
    [TBL] [Abstract][Full Text] [Related]  

  • 2. On the problem of slipper shapes of red blood cells in the microvasculature.
    Tahiri N; Biben T; Ez-Zahraouy H; Benyoussef A; Misbah C
    Microvasc Res; 2013 Jan; 85():40-5. PubMed ID: 23063869
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microvascular blood flow resistance: Role of red blood cell migration and dispersion.
    Katanov D; Gompper G; Fedosov DA
    Microvasc Res; 2015 May; 99():57-66. PubMed ID: 25724979
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Two-dimensional simulation of red blood cell deformation and lateral migration in microvessels.
    Secomb TW; Styp-Rekowska B; Pries AR
    Ann Biomed Eng; 2007 May; 35(5):755-65. PubMed ID: 17380392
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Use of Cell Transit Analyser pulse height to study the deformation of erythrocytes in microchannels.
    Drochon A
    Med Eng Phys; 2005 Mar; 27(2):157-65. PubMed ID: 15642511
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Vesicle dynamics in a confined Poiseuille flow: from steady state to chaos.
    Aouane O; Thiébaud M; Benyoussef A; Wagner C; Misbah C
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Sep; 90(3):033011. PubMed ID: 25314533
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phase diagram and breathing dynamics of a single red blood cell and a biconcave capsule in dilute shear flow.
    Yazdani AZ; Bagchi P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Aug; 84(2 Pt 2):026314. PubMed ID: 21929097
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modeling and simulation of microfluid effects on deformation behavior of a red blood cell in a capillary.
    Ye T; Li H; Lam KY
    Microvasc Res; 2010 Dec; 80(3):453-63. PubMed ID: 20643152
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Intermediate regime and a phase diagram of red blood cell dynamics in a linear flow.
    Levant M; Steinberg V
    Phys Rev E; 2016 Dec; 94(6-1):062412. PubMed ID: 28085369
    [TBL] [Abstract][Full Text] [Related]  

  • 10. SPH-DEM approach to numerically simulate the deformation of three-dimensional RBCs in non-uniform capillaries.
    Polwaththe-Gallage HN; Saha SC; Sauret E; Flower R; Senadeera W; Gu Y
    Biomed Eng Online; 2016 Dec; 15(Suppl 2):161. PubMed ID: 28155717
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Numerical simulation of transient dynamic behavior of healthy and hardened red blood cells in microcapillary flow.
    Hashemi Z; Rahnama M
    Int J Numer Method Biomed Eng; 2016 Nov; 32(11):. PubMed ID: 26729644
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamics of a single red blood cell in simple shear flow.
    Sinha K; Graham MD
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Oct; 92(4):042710. PubMed ID: 26565275
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Numerical simulation of red blood cell distributions in three-dimensional microvascular bifurcations.
    Hyakutake T; Nagai S
    Microvasc Res; 2015 Jan; 97():115-23. PubMed ID: 25446286
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Theoretical model and experimental study of red blood cell (RBC) deformation in microchannels.
    Korin N; Bransky A; Dinnar U
    J Biomech; 2007; 40(9):2088-95. PubMed ID: 17188279
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Disturbed blood flow structuring as critical factor of hemorheological disorders in microcirculation.
    Mchedlishvili G
    Clin Hemorheol Microcirc; 1998 Dec; 19(4):315-25. PubMed ID: 9972669
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The dynamic behavior of chemically "stiffened" red blood cells in microchannel flows.
    Forsyth AM; Wan J; Ristenpart WD; Stone HA
    Microvasc Res; 2010 Jul; 80(1):37-43. PubMed ID: 20303993
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Numerical Simulations of the Motion and Deformation of Three RBCs during Poiseuille Flow through a Constricted Vessel Using IB-LBM.
    Wang R; Wei Y; Wu C; Sun L; Zheng W
    Comput Math Methods Med; 2018; 2018():9425375. PubMed ID: 29681999
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-Throughput Microfluidic Characterization of Erythrocyte Shapes and Mechanical Variability.
    Reichel F; Mauer J; Nawaz AA; Gompper G; Guck J; Fedosov DA
    Biophys J; 2019 Jul; 117(1):14-24. PubMed ID: 31235179
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of cytosol viscosity on the flow behavior of red blood cell suspensions in microvessels.
    Chien W; Gompper G; Fedosov DA
    Microcirculation; 2021 Feb; 28(2):e12668. PubMed ID: 33131140
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dynamics of red blood cells and vesicles in microchannels of oscillating width.
    Braunmüller S; Schmid L; Franke T
    J Phys Condens Matter; 2011 May; 23(18):184116. PubMed ID: 21508467
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.