These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

76 related articles for article (PubMed ID: 24752401)

  • 1. Ultrafast and scalable laser liquid synthesis of tin oxide nanotubes and its application in lithium ion batteries.
    Liu Z; Cao Z; Deng B; Wang Y; Shao J; Kumar P; Liu CR; Wei B; Cheng GJ
    Nanoscale; 2014 Jun; 6(11):5853-8. PubMed ID: 24752401
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multiple ambient hydrolysis deposition of tin oxide into nanoporous carbon to give a stable anode for lithium-ion batteries.
    Raju V; Wang X; Luo W; Ji X
    Chemistry; 2014 Jun; 20(25):7686-91. PubMed ID: 24804844
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A new concept for obtaining SnO2 fiber-in-tube nanostructures with superior electrochemical properties.
    Hong YJ; Yoon JW; Lee JH; Kang YC
    Chemistry; 2015 Jan; 21(1):371-6. PubMed ID: 25450513
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Highly porous structure strategy to improve the SnO2 electrode performance for lithium-ion batteries.
    Yang T; Lu B
    Phys Chem Chem Phys; 2014 Mar; 16(9):4115-21. PubMed ID: 24448608
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Facile mass production of nanoporous SnO
    Wei W; Du P; Liu D; Wang H; Liu P
    J Colloid Interface Sci; 2017 Oct; 503():205-213. PubMed ID: 28527338
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Large-scale low temperature fabrication of SnO2 hollow/nanoporous nanostructures: the template-engaged replacement reaction mechanism and high-rate lithium storage.
    Ding YL; Wen Y; van Aken PA; Maier J; Yu Y
    Nanoscale; 2014 Oct; 6(19):11411-8. PubMed ID: 25148613
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Octahedral tin dioxide nanocrystals as high capacity anode materials for Na-ion batteries.
    Su D; Wang C; Ahn H; Wang G
    Phys Chem Chem Phys; 2013 Aug; 15(30):12543-50. PubMed ID: 23793542
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Self-assembling synthesis of free-standing nanoporous graphene-transition-metal oxide flexible electrodes for high-performance lithium-ion batteries and supercapacitors.
    Huang X; Sun B; Chen S; Wang G
    Chem Asian J; 2014 Jan; 9(1):206-11. PubMed ID: 24129981
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ordered mesoporous core/shell SnO2/C nanocomposite as high-capacity anode material for lithium-ion batteries.
    Liu H; Chen S; Wang G; Qiao SZ
    Chemistry; 2013 Dec; 19(50):16897-901. PubMed ID: 24307354
    [No Abstract]   [Full Text] [Related]  

  • 10. Improved electrochemical performance of SnO2-mesoporous carbon hybrid as a negative electrode for lithium ion battery applications.
    Srinivasan NR; Mitra S; Bandyopadhyaya R
    Phys Chem Chem Phys; 2014 Apr; 16(14):6630-40. PubMed ID: 24576943
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Facile mechanochemical synthesis of nano SnO2/graphene composite from coarse metallic Sn and graphite oxide: an outstanding anode material for lithium-ion batteries.
    Ye F; Zhao B; Ran R; Shao Z
    Chemistry; 2014 Apr; 20(14):4055-63. PubMed ID: 24616072
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A facile one-pot method for synthesis of low-cost iron oxide/activated carbon nanotube electrode materials for lithium-ion batteries.
    Ma J; Yu F; Wen Z; Yang M; Zhou H; Li C; Jin L; Zhou L; Chen L; Yuan Z; Chen J
    Dalton Trans; 2013 Feb; 42(5):1356-9. PubMed ID: 23207979
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nickel oxide nanotubes: synthesis and electrochemical performance for use in lithium ion batteries.
    Needham SA; Wang GX; Liu HK; Yang L
    J Nanosci Nanotechnol; 2006 Jan; 6(1):77-81. PubMed ID: 16573073
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Self-supported SnO2 nanowire electrodes for high-power lithium-ion batteries.
    Ko YD; Kang JG; Park JG; Lee S; Kim DW
    Nanotechnology; 2009 Nov; 20(45):455701. PubMed ID: 19822930
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High capacity and excellent stability of lithium ion battery anode using interface-controlled binder-free multiwall carbon nanotubes grown on copper.
    Lahiri I; Oh SW; Hwang JY; Cho S; Sun YK; Banerjee R; Choi W
    ACS Nano; 2010 Jun; 4(6):3440-6. PubMed ID: 20441185
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mesoporous nickel oxide nanowires: hydrothermal synthesis, characterisation and applications for lithium-ion batteries and supercapacitors with superior performance.
    Su D; Kim HS; Kim WS; Wang G
    Chemistry; 2012 Jun; 18(26):8224-9. PubMed ID: 22589171
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Template-synthesized LiCoO2, LiMn2O4, and LiNi0.8 Co0.2 O2 nanotubes as the cathode materials of lithium ion batteries.
    Li X; Cheng F; Guo B; Chen J
    J Phys Chem B; 2005 Jul; 109(29):14017-24. PubMed ID: 16852760
    [TBL] [Abstract][Full Text] [Related]  

  • 18. One-step electrochemical growth of a three-dimensional Sn-Ni@PEO nanotube array as a high performance lithium-ion battery anode.
    Fan X; Dou P; Jiang A; Ma D; Xu X
    ACS Appl Mater Interfaces; 2014 Dec; 6(24):22282-8. PubMed ID: 25423255
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Wintersweet-flower-like CoFe2O4/MWCNTs hybrid material for high-capacity reversible lithium storage.
    Wang Y; Park J; Sun B; Ahn H; Wang G
    Chem Asian J; 2012 Aug; 7(8):1940-6. PubMed ID: 22593078
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tin nanoparticles encapsulated in porous multichannel carbon microtubes: preparation by single-nozzle electrospinning and application as anode material for high-performance Li-based batteries.
    Yu Y; Gu L; Zhu C; van Aken PA; Maier J
    J Am Chem Soc; 2009 Nov; 131(44):15984-5. PubMed ID: 19886691
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.