These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

232 related articles for article (PubMed ID: 24752439)

  • 1. Identification of Mott insulators and Anderson insulators in self-assembled gold nanoparticles thin films.
    Jiang CW; Ni IC; Tzeng SD; Wu CS; Kuo W
    Nanoscale; 2014 Jun; 6(11):5887-93. PubMed ID: 24752439
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Anderson Insulators in Self-Assembled Gold Nanoparticles Thin Films: Single Electron Hopping between Charge Puddles Originated from Disorder.
    Jiang CW; Ni IC; Hsieh YL; Tzeng SD; Wu CS; Kuo W
    Materials (Basel); 2017 Jun; 10(6):. PubMed ID: 28773008
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mott transitions in the periodic Anderson model.
    Logan DE; Galpin MR; Mannouch J
    J Phys Condens Matter; 2016 Nov; 28(45):455601. PubMed ID: 27618214
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrolyte-gated charge transport in molecularly linked gold nanoparticle films: The transition from a Mott insulator to an exotic metal with strong electron-electron interactions.
    Tie M; Dhirani AA
    J Chem Phys; 2016 Sep; 145(10):104702. PubMed ID: 27634270
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanism of hopping transport in disordered mott insulators.
    Nakatsuji S; Dobrosavljević V; Tanasković D; Minakata M; Fukazawa H; Maeno Y
    Phys Rev Lett; 2004 Oct; 93(14):146401. PubMed ID: 15524817
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Anisotropic metal-insulator transition in epitaxial thin films.
    Altfeder IB; Liang X; Yamada T; Chen DM; Narayanamurti V
    Phys Rev Lett; 2004 Jun; 92(22):226404. PubMed ID: 15245244
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mott-Hubbard transition versus Anderson localization in correlated electron systems with disorder.
    Byczuk K; Hofstetter W; Vollhardt D
    Phys Rev Lett; 2005 Feb; 94(5):056404. PubMed ID: 15783669
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Field-Driven Mott Gap Collapse and Resistive Switch in Correlated Insulators.
    Mazza G; Amaricci A; Capone M; Fabrizio M
    Phys Rev Lett; 2016 Oct; 117(17):176401. PubMed ID: 27824473
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mott insulators and the doping-induced Mott transition within DMFT: exact results for the one-band Hubbard model.
    Logan DE; Galpin MR
    J Phys Condens Matter; 2016 Jan; 28(2):025601. PubMed ID: 26658417
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Topological-metal to band-insulator transition in (Bi(1-x)In(x))2Se3 thin films.
    Brahlek M; Bansal N; Koirala N; Xu SY; Neupane M; Liu C; Hasan MZ; Oh S
    Phys Rev Lett; 2012 Nov; 109(18):186403. PubMed ID: 23215303
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pseudogap in doped Mott insulators is the near-neighbor analogue of the Mott gap.
    Stanescu TD; Phillips P
    Phys Rev Lett; 2003 Jul; 91(1):017002. PubMed ID: 12906566
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ultrafast charge recombination in a photoexcited Mott-Hubbard insulator.
    Lenarčič Z; Prelovšek P
    Phys Rev Lett; 2013 Jul; 111(1):016401. PubMed ID: 23863016
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Observation of Anderson localization in ultrathin films of three-dimensional topological insulators.
    Liao J; Ou Y; Feng X; Yang S; Lin C; Yang W; Wu K; He K; Ma X; Xue QK; Li Y
    Phys Rev Lett; 2015 May; 114(21):216601. PubMed ID: 26066450
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of low energy barrier contact resistance in charge transport measurements of gold nanoparticle+dithiol-based self-assembled films.
    Joanis P; Tie M; Dhirani AA
    Langmuir; 2013 Jan; 29(4):1264-72. PubMed ID: 23294421
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mott transition in VO2 revealed by infrared spectroscopy and nano-imaging.
    Qazilbash MM; Brehm M; Chae BG; Ho PC; Andreev GO; Kim BJ; Yun SJ; Balatsky AV; Maple MB; Keilmann F; Kim HT; Basov DN
    Science; 2007 Dec; 318(5857):1750-3. PubMed ID: 18079396
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gigantic optical nonlinearity in one-dimensional Mott-Hubbard insulators.
    Kishida H; Matsuzaki H; Okamoto H; Manabe T; Yamashita M; Taguchi Y; Tokura Y
    Nature; 2000 Jun; 405(6789):929-32. PubMed ID: 10879529
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ultra-fast photo-carrier relaxation in Mott insulators with short-range spin correlations.
    Eckstein M; Werner P
    Sci Rep; 2016 Feb; 6():21235. PubMed ID: 26883536
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interchain-frustration-induced metallic state in quasi-one-dimensional Mott insulators.
    Tsuchiizu M; Suzumura Y; Bourbonnais C
    Phys Rev Lett; 2007 Sep; 99(12):126404. PubMed ID: 17930530
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mott Quantum Criticality in the Anisotropic 2D Hubbard Model.
    Lenz B; Manmana SR; Pruschke T; Assaad FF; Raczkowski M
    Phys Rev Lett; 2016 Feb; 116(8):086403. PubMed ID: 26967431
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inhomogeneous metallic phase in a disordered Mott insulator in two dimensions.
    Heidarian D; Trivedi N
    Phys Rev Lett; 2004 Sep; 93(12):126401. PubMed ID: 15447287
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.