These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

230 related articles for article (PubMed ID: 24752467)

  • 1. Nanomanipulation, nanotribology and nanomechanics of Au nanorods in dry and liquid environments using an AFM and depth sensing nanoindenter.
    Maharaj D; Bhushan B
    Nanoscale; 2014 Jun; 6(11):5838-52. PubMed ID: 24752467
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of carbon nanohorns on nanofriction and wear reduction in dry and liquid environments.
    Maharaj D; Bhushan B; Iijima S
    J Colloid Interface Sci; 2013 Jun; 400():147-60. PubMed ID: 23566944
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of spherical Au nanoparticles on nanofriction and wear reduction in dry and liquid environments.
    Maharaj D; Bhushan B
    Beilstein J Nanotechnol; 2012; 3():759-72. PubMed ID: 23213639
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Scale effects of nanomechanical properties and deformation behavior of Au nanoparticle and thin film using depth sensing nanoindentation.
    Maharaj D; Bhushan B
    Beilstein J Nanotechnol; 2014; 5():822-36. PubMed ID: 24991519
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nanomechanical behavior of MoS2 and WS2 multi-walled nanotubes and carbon nanohorns.
    Maharaj D; Bhushan B
    Sci Rep; 2015 Feb; 5():8539. PubMed ID: 25702922
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanisms of friction reduction of nanoscale sliding contacts achieved through ultrasonic excitation.
    Jiryaei Sharahi H; Egberts P; Kim S
    Nanotechnology; 2019 Feb; 30(7):075502. PubMed ID: 30523838
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Addition of low concentrations of an ionic liquid to a base oil reduces friction over multiple length scales: a combined nano- and macrotribology investigation.
    Li H; Somers AE; Howlett PC; Rutland MW; Forsyth M; Atkin R
    Phys Chem Chem Phys; 2016 Mar; 18(9):6541-7. PubMed ID: 26865399
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A nanoscale friction investigation during the manipulation of nanoparticles in controlled environments.
    Palacio M; Bhushan B
    Nanotechnology; 2008 Aug; 19(31):315710. PubMed ID: 21828802
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nanotribology, nanomechanics and nanomaterials characterization.
    Bhushan B
    Philos Trans A Math Phys Eng Sci; 2008 Apr; 366(1869):1351-81. PubMed ID: 18156126
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Size Dependence of Nanoscale Wear of Silicon Carbide.
    Tangpatjaroen C; Grierson D; Shannon S; Jakes JE; Szlufarska I
    ACS Appl Mater Interfaces; 2017 Jan; 9(2):1929-1940. PubMed ID: 27997110
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A wear-resistant silicon nano-spherical AFM probe for robust nanotribological studies.
    Uzoma PC; Ding X; Wen X; Zhang L; Penkov OV; Hu H
    Phys Chem Chem Phys; 2022 Oct; 24(38):23849-23857. PubMed ID: 36165057
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Friction Force Microscopy Analysis of Self-Adaptive W-S-C Coatings: Nanoscale Friction and Wear.
    Zekonyte J; Polcar T
    ACS Appl Mater Interfaces; 2015 Sep; 7(38):21056-64. PubMed ID: 26340161
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Atomic-scale friction on diamond: a comparison of different sliding directions on (001) and (111) surfaces using MD and AFM.
    Gao G; Cannara RJ; Carpick RW; Harrison JA
    Langmuir; 2007 May; 23(10):5394-405. PubMed ID: 17407330
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Investigation of scale effects and directionality dependence on friction and adhesion of human hair using AFM and macroscale friction test apparatus.
    LaTorre C; Bhushan B
    Ultramicroscopy; 2006; 106(8-9):720-34. PubMed ID: 16675116
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sub-nano to nanometer wear and tribocorrosion of titanium oxide-metal surfaces by in situ atomic force microscopy.
    Liu Y; Zhu D; Gilbert JL
    Acta Biomater; 2021 May; 126():477-484. PubMed ID: 33812071
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ionic enhancement of silica surface nanowear in electrolyte solutions.
    Vakarelski IU; Teramoto N; McNamee CE; Marston JO; Higashitani K
    Langmuir; 2012 Nov; 28(46):16072-9. PubMed ID: 23110598
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Macro- to nanoscale wear prevention via molecular adsorption.
    Asay DB; Dugger MT; Ohlhausen JA; Kim SH
    Langmuir; 2008 Jan; 24(1):155-9. PubMed ID: 18044943
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Frontiers in nanotribology: Magnetic storage, bio/nanotechnology, cosmetics, and bioinspiration.
    Bhushan B
    J Colloid Interface Sci; 2020 Oct; 577():127-162. PubMed ID: 32473475
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Friction measurement on free standing plates using atomic force microscopy.
    Tang XS; Loke YC; Lu P; Sinha SK; O'Shea SJ
    Rev Sci Instrum; 2013 Jan; 84(1):013702. PubMed ID: 23387654
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Load-Dependent Friction Hysteresis on Graphene.
    Ye Z; Egberts P; Han GH; Johnson AT; Carpick RW; Martini A
    ACS Nano; 2016 May; 10(5):5161-8. PubMed ID: 27110836
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.