BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 24752570)

  • 1. Neuroanatomical basis for cholinergic modulation of locomotor networks by sacral relay neurons with ascending lumbar projections.
    Finkel E; Etlin A; Cherniak M; Mor Y; Lev-Tov A; Anglister L
    J Comp Neurol; 2014 Oct; 522(15):3437-55. PubMed ID: 24752570
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of sacral interneurons that mediate activation of locomotor pattern generators by sacrocaudal afferent input.
    Etlin A; Finkel E; Mor Y; O'Donovan MJ; Anglister L; Lev-Tov A
    J Neurosci; 2013 Jan; 33(2):734-47. PubMed ID: 23303951
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Shaping the Output of Lumbar Flexor Motoneurons by Sacral Neuronal Networks.
    Cherniak M; Anglister L; Lev-Tov A
    J Neurosci; 2017 Feb; 37(5):1294-1311. PubMed ID: 28025254
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The motor output of hindlimb innervating segments of the spinal cord is modulated by cholinergic activation of rostrally projecting sacral relay neurons.
    Etlin A; Finkel E; Cherniak M; Lev-Tov A; Anglister L
    J Mol Neurosci; 2014 Jul; 53(3):517-24. PubMed ID: 24973872
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The sacral networks and neural pathways used to elicit lumbar motor rhythm in the rodent spinal cord.
    Cherniak M; Etlin A; Strauss I; Anglister L; Lev-Tov A
    Front Neural Circuits; 2014; 8():143. PubMed ID: 25520624
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rhythmogenic networks are potently modulated by activation of muscarinic acetylcholine receptors in the rodent spinal cord.
    Matzner H; Zelinger M; Cherniak M; Anglister L; Lev-Tov A
    J Neurochem; 2021 Sep; 158(6):1263-1273. PubMed ID: 33735482
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ascending pathways that mediate cholinergic modulation of lumbar motor activity.
    Anglister L; Cherniak M; Lev-Tov A
    J Neurochem; 2017 Aug; 142 Suppl 2():82-89. PubMed ID: 28791705
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Long and short multifunicular projections of sacral neurons are activated by sensory input to produce locomotor activity in the absence of supraspinal control.
    Etlin A; Blivis D; Ben-Zwi M; Lev-Tov A
    J Neurosci; 2010 Aug; 30(31):10324-36. PubMed ID: 20685976
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Neural pathways between sacrocaudal afferents and lumbar pattern generators in neonatal rats.
    Strauss I; Lev-Tov A
    J Neurophysiol; 2003 Feb; 89(2):773-84. PubMed ID: 12574455
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Balanced cholinergic modulation of spinal locomotor circuits via M2 and M3 muscarinic receptors.
    Nascimento F; Spindler LRB; Miles GB
    Sci Rep; 2019 Oct; 9(1):14051. PubMed ID: 31575899
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Disparate cholinergic currents in rat principal trigeminal sensory nucleus neurons mediated by M1 and M2 receptors: a possible mechanism for selective gating of afferent sensory neurotransmission.
    Kohlmeier KA; Soja PJ; Kristensen MP
    Eur J Neurosci; 2006 Jun; 23(12):3245-58. PubMed ID: 16820015
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sensory-induced activation of pattern generators in the absence of supraspinal control.
    Lev-Tov A; Etlin A; Blivis D
    Ann N Y Acad Sci; 2010 Jun; 1198():54-62. PubMed ID: 20536920
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Differential effects of opioids on sacrocaudal afferent pathways and central pattern generators in the neonatal rat spinal cord.
    Blivis D; Mentis GZ; O'donovan MJ; Lev-Tov A
    J Neurophysiol; 2007 Apr; 97(4):2875-86. PubMed ID: 17287435
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cholinergic mechanisms in spinal locomotion-potential target for rehabilitation approaches.
    Jordan LM; McVagh JR; Noga BR; Cabaj AM; Majczyński H; Sławińska U; Provencher J; Leblond H; Rossignol S
    Front Neural Circuits; 2014; 8():132. PubMed ID: 25414645
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Propriospinal neurons contribute to bulbospinal transmission of the locomotor command signal in the neonatal rat spinal cord.
    Zaporozhets E; Cowley KC; Schmidt BJ
    J Physiol; 2006 Apr; 572(Pt 2):443-58. PubMed ID: 16469789
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rostral lumbar segments are the key controllers of hindlimb locomotor rhythmicity in the adult spinal rat.
    Gerasimenko Y; Preston C; Zhong H; Roy RR; Edgerton VR; Shah PK
    J Neurophysiol; 2019 Aug; 122(2):585-600. PubMed ID: 30943092
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of cholinergic and noradrenergic agents on locomotion in the mudpuppy (Necturus maculatus).
    Fok M; Stein RB
    Exp Brain Res; 2002 Aug; 145(4):498-504. PubMed ID: 12172661
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bimodal Respiratory-Locomotor Neurons in the Neonatal Rat Spinal Cord.
    Le Gal JP; Juvin L; Cardoit L; Morin D
    J Neurosci; 2016 Jan; 36(3):926-37. PubMed ID: 26791221
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vitro functional interactions of acetylcholine esterase inhibitors and muscarinic receptor antagonists in the urinary bladder of the rat.
    Killi UK; Wsol V; Soukup O; Kuca K; Winder M; Tobin G
    Clin Exp Pharmacol Physiol; 2014 Feb; 41(2):139-46. PubMed ID: 24341923
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cholinesterases in development and disease.
    Anglister L; Etlin A; Finkel E; Durrant AR; Lev-Tov A
    Chem Biol Interact; 2008 Sep; 175(1-3):92-100. PubMed ID: 18571632
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.