These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 24752570)

  • 21. Propriospinal neurons contribute to bulbospinal transmission of the locomotor command signal in the neonatal rat spinal cord.
    Zaporozhets E; Cowley KC; Schmidt BJ
    J Physiol; 2006 Apr; 572(Pt 2):443-58. PubMed ID: 16469789
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Is NMDA receptor activation essential for the production of locomotor-like activity in the neonatal rat spinal cord?
    Cowley KC; Zaporozhets E; Maclean JN; Schmidt BJ
    J Neurophysiol; 2005 Dec; 94(6):3805-14. PubMed ID: 16120672
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Neurochemical excitation of propriospinal neurons facilitates locomotor command signal transmission in the lesioned spinal cord.
    Zaporozhets E; Cowley KC; Schmidt BJ
    J Neurophysiol; 2011 Jun; 105(6):2818-29. PubMed ID: 21451056
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Identification of multisegmental nociceptive afferents that modulate locomotor circuits in the neonatal mouse spinal cord.
    Mandadi S; Hong P; Tran MA; Bráz JM; Colarusso P; Basbaum AI; Whelan PJ
    J Comp Neurol; 2013 Aug; 521(12):2870-87. PubMed ID: 23436436
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Differential modulation by carbachol of four separate excitatory afferent systems to the rat subiculum in vitro.
    Kunitake A; Kunitake T; Stewart M
    Hippocampus; 2004; 14(8):986-99. PubMed ID: 15390173
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Sacrocaudal afferents induce rhythmic efferent bursting in isolated spinal cords of neonatal rats.
    Lev-Tov A; Delvolvé I; Kremer E
    J Neurophysiol; 2000 Feb; 83(2):888-94. PubMed ID: 10669502
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Inhibitory role of the spinal cholinergic system in the control of urethral continence reflex during sneezing in rats.
    Yoshikawa S; Kitta T; Miyazato M; Sumino Y; Yoshimura N
    Neurourol Urodyn; 2014 Apr; 33(4):443-8. PubMed ID: 23754327
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Spinal cholinergic interneurons differentially control motoneuron excitability and alter the locomotor network operational range.
    Bertuzzi M; Ampatzis K
    Sci Rep; 2018 Jan; 8(1):1988. PubMed ID: 29386582
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Interaction between developing spinal locomotor networks in the neonatal mouse.
    Gordon IT; Dunbar MJ; Vanneste KJ; Whelan PJ
    J Neurophysiol; 2008 Jul; 100(1):117-28. PubMed ID: 18436636
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Cholinergic modulation of primary afferent glutamatergic transmission in rat medullary dorsal horn neurons.
    Jeong SG; Choi IS; Cho JH; Jang IS
    Neuropharmacology; 2013 Dec; 75():295-303. PubMed ID: 23954675
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Serotonergic modulation of sacral dorsal root stimulation-induced locomotor output in newborn rat.
    Oueghlani Z; Juvin L; Lambert FM; Cardoit L; Courtand G; Masmejean F; Cazalets JR; Barrière G
    Neuropharmacology; 2020 Jun; 170():107815. PubMed ID: 31634501
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The anti-inflammatory effect of peripheral bee venom stimulation is mediated by central muscarinic type 2 receptors and activation of sympathetic preganglionic neurons.
    Yoon SY; Kim HW; Roh DH; Kwon YB; Jeong TO; Han HJ; Lee HJ; Choi SM; Ryu YH; Beitz AJ; Lee JH
    Brain Res; 2005 Jul; 1049(2):210-6. PubMed ID: 15953592
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Different effects of spinalization and locomotor training of spinal animals on cholinergic innervation of the soleus and tibialis anterior motoneurons.
    Skup M; Gajewska-Wozniak O; Grygielewicz P; Mankovskaya T; Czarkowska-Bauch J
    Eur J Neurosci; 2012 Sep; 36(5):2679-88. PubMed ID: 22708650
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Spinal and pontine relay pathways mediating respiratory rhythm entrainment by limb proprioceptive inputs in the neonatal rat.
    Giraudin A; Le Bon-Jégo M; Cabirol MJ; Simmers J; Morin D
    J Neurosci; 2012 Aug; 32(34):11841-53. PubMed ID: 22915125
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Activation of muscarinic receptors inhibits spinal dorsal horn projection neurons: role of GABAB receptors.
    Chen SR; Pan HL
    Neuroscience; 2004; 125(1):141-8. PubMed ID: 15051153
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Regulation of glutamate release from primary afferents and interneurons in the spinal cord by muscarinic receptor subtypes.
    Zhang HM; Chen SR; Pan HL
    J Neurophysiol; 2007 Jan; 97(1):102-9. PubMed ID: 17050831
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A₁ adenosine receptor modulation of chemically and electrically evoked lumbar locomotor network activity in isolated newborn rat spinal cords.
    Taccola G; Olivieri D; D'Angelo G; Blackburn P; Secchia L; Ballanyi K
    Neuroscience; 2012 Oct; 222():191-204. PubMed ID: 22824428
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Long ascending propriospinal projections from lumbosacral to upper cervical spinal cord in the rat.
    Dutton RC; Carstens MI; Antognini JF; Carstens E
    Brain Res; 2006 Nov; 1119(1):76-85. PubMed ID: 16996042
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Cholinergic Modulation of Locomotor Circuits in Vertebrates.
    Le Ray D; Bertrand SS; Dubuc R
    Int J Mol Sci; 2022 Sep; 23(18):. PubMed ID: 36142651
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Cervical response among ascending ventrolateral funiculus pathways of the neonatal rat.
    Reed WR; Magnuson DS
    Brain Res; 2013 Jan; 1491():136-46. PubMed ID: 23146714
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.