These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 2475274)

  • 1. Slow recovery of excitability and the Wenckebach phenomenon in the single guinea pig ventricular myocyte.
    Delmar M; Michaels DC; Jalife J
    Circ Res; 1989 Sep; 65(3):761-74. PubMed ID: 2475274
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ionic basis and analytical solution of the wenckebach phenomenon in guinea pig ventricular myocytes.
    Delmar M; Glass L; Michaels DC; Jalife J
    Circ Res; 1989 Sep; 65(3):775-88. PubMed ID: 2766491
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Wenckebach periodicity in single atrioventricular nodal cells from the rabbit heart.
    Hoshino K; Anumonwo J; Delmar M; Jalife J
    Circulation; 1990 Dec; 82(6):2201-16. PubMed ID: 2242542
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Barium-induced automatic activity in isolated ventricular myocytes from guinea-pig hearts.
    Hirano Y; Hiraoka M
    J Physiol; 1988 Jan; 395():455-72. PubMed ID: 2457682
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hysteresis in the excitability of isolated guinea pig ventricular myocytes.
    Lorente P; Delgado C; Delmar M; Henzel D; Jalife J
    Circ Res; 1991 Nov; 69(5):1301-15. PubMed ID: 1718624
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ionic basis of the different action potential configurations of single guinea-pig atrial and ventricular myocytes.
    Hume JR; Uehara A
    J Physiol; 1985 Nov; 368():525-44. PubMed ID: 2416918
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrotonic inhibition and active facilitation of excitability in ventricular muscle.
    Davidenko JM; Delmar M; Beaumont J; Michaels DC; Lorente P; Jalife J
    J Cardiovasc Electrophysiol; 1994 Nov; 5(11):945-60. PubMed ID: 7889234
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ionic mechanisms mediating the differential effects of methohexital and thiopental on action potential duration in guinea pig and rabbit isolated ventricular myocytes.
    Martynyuk AE; Morey TE; Raatikainen MJ; Seubert CN; Dennis DM
    Anesthesiology; 1999 Jan; 90(1):156-64. PubMed ID: 9915324
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Computer model of current-induced early afterdepolarizations in guinea pig ventricular myocytes.
    Nordin C; Ming Z
    Am J Physiol; 1995 Jun; 268(6 Pt 2):H2440-59. PubMed ID: 7611496
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Voltage-dependent activation of the inward-rectifier potassium channel in the ventricular cell membrane of guinea-pig heart.
    Kurachi Y
    J Physiol; 1985 Sep; 366():365-85. PubMed ID: 2414434
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Density and kinetics of I(Kr) and I(Ks) in guinea pig and rabbit ventricular myocytes explain different efficacy of I(Ks) blockade at high heart rate in guinea pig and rabbit: implications for arrhythmogenesis in humans.
    Lu Z; Kamiya K; Opthof T; Yasui K; Kodama I
    Circulation; 2001 Aug; 104(8):951-6. PubMed ID: 11514385
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanism of increased amplitude and duration of the plateau with sudden shortening of diastolic intervals in rabbit ventricular cells.
    Hiraoka M; Kawano S
    Circ Res; 1987 Jan; 60(1):14-26. PubMed ID: 2436824
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of potassium currents in rabbit atrial and ventricular cells.
    Giles WR; Imaizumi Y
    J Physiol; 1988 Nov; 405():123-45. PubMed ID: 2855639
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dynamics of the inward rectifier K+ current during the action potential of guinea pig ventricular myocytes.
    Ibarra J; Morley GE; Delmar M
    Biophys J; 1991 Dec; 60(6):1534-9. PubMed ID: 1777570
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The arrhythmogenic transient inward current iTI and related contraction in isolated guinea-pig ventricular myocytes.
    Fedida D; Noble D; Rankin AC; Spindler AJ
    J Physiol; 1987 Nov; 392():523-42. PubMed ID: 2451728
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sodium-calcium exchange during the action potential in guinea-pig ventricular cells.
    Egan TM; Noble D; Noble SJ; Powell T; Spindler AJ; Twist VW
    J Physiol; 1989 Apr; 411():639-61. PubMed ID: 2482358
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrophysiologic effects of acute myocardial ischemia: a theoretical study of altered cell excitability and action potential duration.
    Shaw RM; Rudy Y
    Cardiovasc Res; 1997 Aug; 35(2):256-72. PubMed ID: 9349389
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of cadmium and nisoldipine on the delayed rectifier potassium current in guinea pig ventricular myocytes.
    Daleau P; Khalifa M; Turgeon J
    J Pharmacol Exp Ther; 1997 May; 281(2):826-33. PubMed ID: 9152391
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cellular responses to electrical stimulation: a study using a model of the ventricular cardiac action potential.
    Rudy Y; Luo CH
    Adv Exp Med Biol; 1993; 346():79-90. PubMed ID: 8184783
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Time-dependent outward current in guinea pig ventricular myocytes. Gating kinetics of the delayed rectifier.
    Balser JR; Bennett PB; Roden DM
    J Gen Physiol; 1990 Oct; 96(4):835-63. PubMed ID: 2258717
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.