BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

236 related articles for article (PubMed ID: 24752812)

  • 1. The role of malic enzyme as the provider of NADPH in oleaginous microorganisms: a reappraisal and unsolved problems.
    Ratledge C
    Biotechnol Lett; 2014 Aug; 36(8):1557-68. PubMed ID: 24752812
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regulatory properties of malic enzyme in the oleaginous yeast, Yarrowia lipolytica, and its non-involvement in lipid accumulation.
    Zhang H; Zhang L; Chen H; Chen YQ; Ratledge C; Song Y; Chen W
    Biotechnol Lett; 2013 Dec; 35(12):2091-8. PubMed ID: 23892983
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analysis of ATP-citrate lyase and malic enzyme mutants of Yarrowia lipolytica points out the importance of mannitol metabolism in fatty acid synthesis.
    Dulermo T; Lazar Z; Dulermo R; Rakicka M; Haddouche R; Nicaud JM
    Biochim Biophys Acta; 2015 Sep; 1851(9):1107-17. PubMed ID: 25959598
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ability of cytosolic malate dehydrogenase and lactate dehydrogenase to increase the ratio of NADPH to NADH oxidation by cytosolic glycerol-3-phosphate dehydrogenase.
    Fahien LA; Laboy JI; Din ZZ; Prabhakar P; Budker T; Chobanian M
    Arch Biochem Biophys; 1999 Apr; 364(2):185-94. PubMed ID: 10190973
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The oxidative pentose phosphate pathway is the primary source of NADPH for lipid overproduction from glucose in Yarrowia lipolytica.
    Wasylenko TM; Ahn WS; Stephanopoulos G
    Metab Eng; 2015 Jul; 30():27-39. PubMed ID: 25747307
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The NADPH-producing pathways (pentose phosphate and malic enzyme) are regulated by the NADPH consumption in rat mammary gland.
    Revilla E; Fabregat I; Santa María C; Machado A
    Biochem Int; 1987 May; 14(5):957-62. PubMed ID: 3454650
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cytosolic NADPH homeostasis in glucose-starved procyclic Trypanosoma brucei relies on malic enzyme and the pentose phosphate pathway fed by gluconeogenic flux.
    Allmann S; Morand P; Ebikeme C; Gales L; Biran M; Hubert J; Brennand A; Mazet M; Franconi JM; Michels PA; Portais JC; Boshart M; Bringaud F
    J Biol Chem; 2013 Jun; 288(25):18494-505. PubMed ID: 23665470
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of NADP-dependent malic enzyme from developing castor oil seed endosperm.
    Shearer HL; Turpin DH; Dennis DT
    Arch Biochem Biophys; 2004 Sep; 429(2):134-44. PubMed ID: 15313216
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reassessment of the transhydrogenase/malate shunt pathway in Clostridium thermocellum ATCC 27405 through kinetic characterization of malic enzyme and malate dehydrogenase.
    Taillefer M; Rydzak T; Levin DB; Oresnik IJ; Sparling R
    Appl Environ Microbiol; 2015 Apr; 81(7):2423-32. PubMed ID: 25616802
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The NADPH consumption regulates the NADPH-producing pathways (pentose phosphate cycle and malic enzyme) in rat adipocytes.
    Fabregat I; Revilla E; Machado A
    Mol Cell Biochem; 1987 Mar; 74(1):77-81. PubMed ID: 3587232
    [TBL] [Abstract][Full Text] [Related]  

  • 11. NADPH production, a growth marker, is stimulated by maslinic acid in gilthead sea bream by increased NADP-IDH and ME expression.
    Rufino-Palomares EE; Reyes-Zurita FJ; García-Salguero L; Peragón J; de la Higuera M; Lupiáñez JA
    Comp Biochem Physiol C Toxicol Pharmacol; 2016 Sep; 187():32-42. PubMed ID: 27178358
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of NADP+ (corrected)-linked malic enzymes as regulators of the pool size of tricarboxylic acid-cycle intermediates in the perfused rat heart.
    Sundqvist KE; Heikkilä J; Hassinen IE; Hiltunen JK
    Biochem J; 1987 May; 243(3):853-7. PubMed ID: 3663104
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deficiency in cytosolic malic enzyme does not increase acetaminophen-induced hepato-toxicity.
    Qian S; Mumick S; Nizner P; Tota MR; Menetski J; Reitman ML; Macneil DJ
    Basic Clin Pharmacol Toxicol; 2008 Jul; 103(1):36-42. PubMed ID: 18346052
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Aluminum decreases the glutathione regeneration by the inhibition of NADP-isocitrate dehydrogenase in mitochondria.
    Murakami K; Yoshino M
    J Cell Biochem; 2004 Dec; 93(6):1267-71. PubMed ID: 15486972
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The coupling of metabolic to secretory events in pancreatic islets. The cytosolic redox state.
    Sener A; Malaisse-Lagae F; Dufrane SP; Malaisse WJ
    Biochem J; 1984 Jun; 220(2):433-40. PubMed ID: 6378186
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A cytosolic NADP-malic enzyme gene from rice (Oryza sativa L.) confers salt tolerance in transgenic Arabidopsis.
    Cheng Y; Long M
    Biotechnol Lett; 2007 Jul; 29(7):1129-34. PubMed ID: 17516134
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High lipid accumulation in Yarrowia lipolytica cultivated under double limitation of nitrogen and magnesium.
    Bellou S; Triantaphyllidou IE; Mizerakis P; Aggelis G
    J Biotechnol; 2016 Sep; 234():116-126. PubMed ID: 27498313
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bifunctional Malic/Malolactic Enzyme Provides a Novel Mechanism for NADPH-Balancing in Bacillus subtilis.
    Hörl M; Fuhrer T; Zamboni N
    mBio; 2021 Apr; 12(2):. PubMed ID: 33824210
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Advancing oleaginous microorganisms to produce lipid via metabolic engineering technology.
    Liang MH; Jiang JG
    Prog Lipid Res; 2013 Oct; 52(4):395-408. PubMed ID: 23685199
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High activities of NADP+-dependent isocitrate dehydrogenase and malic enzyme in rabbit lens epithelial cells.
    Winkler BS; Solomon F
    Invest Ophthalmol Vis Sci; 1988 May; 29(5):821-3. PubMed ID: 3366571
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.