These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
181 related articles for article (PubMed ID: 24752813)
1. Tomato terpene synthases TPS5 and TPS39 account for a monoterpene linalool production in tomato fruits. Cao Y; Hu S; Dai Q; Liu Y Biotechnol Lett; 2014 Aug; 36(8):1717-25. PubMed ID: 24752813 [TBL] [Abstract][Full Text] [Related]
2. Tomato linalool synthase is induced in trichomes by jasmonic acid. van Schie CC; Haring MA; Schuurink RC Plant Mol Biol; 2007 Jun; 64(3):251-63. PubMed ID: 17440821 [TBL] [Abstract][Full Text] [Related]
4. Profiling of volatile terpenes from almond (Prunus dulcis) young fruits and characterization of seven terpene synthase genes. Nawade B; Yahyaa M; Reuveny H; Shaltiel-Harpaz L; Eisenbach O; Faigenboim A; Bar-Yaakov I; Holland D; Ibdah M Plant Sci; 2019 Oct; 287():110187. PubMed ID: 31481200 [TBL] [Abstract][Full Text] [Related]
5. Cytosolic monoterpene biosynthesis is supported by plastid-generated geranyl diphosphate substrate in transgenic tomato fruits. Gutensohn M; Orlova I; Nguyen TT; Davidovich-Rikanati R; Ferruzzi MG; Sitrit Y; Lewinsohn E; Pichersky E; Dudareva N Plant J; 2013 Aug; 75(3):351-63. PubMed ID: 23607888 [TBL] [Abstract][Full Text] [Related]
6. Functional genomics reveals that a compact terpene synthase gene family can account for terpene volatile production in apple. Nieuwenhuizen NJ; Green SA; Chen X; Bailleul EJ; Matich AJ; Wang MY; Atkinson RG Plant Physiol; 2013 Feb; 161(2):787-804. PubMed ID: 23256150 [TBL] [Abstract][Full Text] [Related]
7. Monoterpenes in the glandular trichomes of tomato are synthesized from a neryl diphosphate precursor rather than geranyl diphosphate. Schilmiller AL; Schauvinhold I; Larson M; Xu R; Charbonneau AL; Schmidt A; Wilkerson C; Last RL; Pichersky E Proc Natl Acad Sci U S A; 2009 Jun; 106(26):10865-70. PubMed ID: 19487664 [TBL] [Abstract][Full Text] [Related]
8. Evolution of a complex locus for terpene biosynthesis in solanum. Matsuba Y; Nguyen TT; Wiegert K; Falara V; Gonzales-Vigil E; Leong B; Schäfer P; Kudrna D; Wing RA; Bolger AM; Usadel B; Tissier A; Fernie AR; Barry CS; Pichersky E Plant Cell; 2013 Jun; 25(6):2022-36. PubMed ID: 23757397 [TBL] [Abstract][Full Text] [Related]
9. Overexpression of the lemon basil alpha-zingiberene synthase gene increases both mono- and sesquiterpene contents in tomato fruit. Davidovich-Rikanati R; Lewinsohn E; Bar E; Iijima Y; Pichersky E; Sitrit Y Plant J; 2008 Oct; 56(2):228-238. PubMed ID: 18643974 [TBL] [Abstract][Full Text] [Related]
10. Natural variation in monoterpene synthesis in kiwifruit: transcriptional regulation of terpene synthases by NAC and ETHYLENE-INSENSITIVE3-like transcription factors. Nieuwenhuizen NJ; Chen X; Wang MY; Matich AJ; Perez RL; Allan AC; Green SA; Atkinson RG Plant Physiol; 2015 Apr; 167(4):1243-58. PubMed ID: 25649633 [TBL] [Abstract][Full Text] [Related]
11. UV-B irradiation differentially regulates terpene synthases and terpene content of peach. Liu H; Cao X; Liu X; Xin R; Wang J; Gao J; Wu B; Gao L; Xu C; Zhang B; Grierson D; Chen K Plant Cell Environ; 2017 Oct; 40(10):2261-2275. PubMed ID: 28722114 [TBL] [Abstract][Full Text] [Related]
12. Implementation of CsLIS/NES in linalool biosynthesis involves transcript splicing regulation in Camellia sinensis. Liu GF; Liu JJ; He ZR; Wang FM; Yang H; Yan YF; Gao MJ; Gruber MY; Wan XC; Wei S Plant Cell Environ; 2018 Jan; 41(1):176-186. PubMed ID: 28963730 [TBL] [Abstract][Full Text] [Related]
13. Two nearly identical terpene synthases catalyze the formation of nerolidol and linalool in snapdragon flowers. Nagegowda DA; Gutensohn M; Wilkerson CG; Dudareva N Plant J; 2008 Jul; 55(2):224-39. PubMed ID: 18363779 [TBL] [Abstract][Full Text] [Related]
14. Isolation and characterization of terpene synthases potentially involved in flavor development of ripening olive (Olea europaea) fruits. Vezzaro A; Krause ST; Nonis A; Ramina A; Degenhardt J; Ruperti B J Plant Physiol; 2012 Jun; 169(9):908-14. PubMed ID: 22475500 [TBL] [Abstract][Full Text] [Related]
15. Identification and functional characterization of three new terpene synthase genes involved in chemical defense and abiotic stresses in Santalum album. Zhang X; Niu M; Teixeira da Silva JA; Zhang Y; Yuan Y; Jia Y; Xiao Y; Li Y; Fang L; Zeng S; Ma G BMC Plant Biol; 2019 Mar; 19(1):115. PubMed ID: 30922222 [TBL] [Abstract][Full Text] [Related]
16. Metabolic engineering of monoterpene biosynthesis in tomato fruits via introduction of the non-canonical substrate neryl diphosphate. Gutensohn M; Nguyen TT; McMahon RD; Kaplan I; Pichersky E; Dudareva N Metab Eng; 2014 Jul; 24():107-16. PubMed ID: 24831707 [TBL] [Abstract][Full Text] [Related]
17. Induction of Jasmonic Acid-Associated Defenses by Thrips Alters Host Suitability for Conspecifics and Correlates with Increased Trichome Densities in Tomato. Escobar-Bravo R; Klinkhamer PGL; Leiss KA Plant Cell Physiol; 2017 Mar; 58(3):622-634. PubMed ID: 28158865 [TBL] [Abstract][Full Text] [Related]
18. Identification, functional characterization, and regulation of the enzyme responsible for floral (E)-nerolidol biosynthesis in kiwifruit (Actinidia chinensis). Green SA; Chen X; Nieuwenhuizen NJ; Matich AJ; Wang MY; Bunn BJ; Yauk YK; Atkinson RG J Exp Bot; 2012 Mar; 63(5):1951-67. PubMed ID: 22162874 [TBL] [Abstract][Full Text] [Related]
19. CRISPR/Cas9-Mediated Shu P; Li Z; Min D; Zhang X; Ai W; Li J; Zhou J; Li Z; Li F; Li X J Agric Food Chem; 2020 May; 68(20):5529-5538. PubMed ID: 32372640 [TBL] [Abstract][Full Text] [Related]
20. The complete functional characterisation of the terpene synthase family in tomato. Zhou F; Pichersky E New Phytol; 2020 Jun; 226(5):1341-1360. PubMed ID: 31943222 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]