BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 24753080)

  • 1. Rapid settling of nanoparticles due to heteroaggregation with suspended sediment.
    Velzeboer I; Quik JT; van de Meent D; Koelmans AA
    Environ Toxicol Chem; 2014 Aug; 33(8):1766-73. PubMed ID: 24753080
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Heteroaggregation and sedimentation rates for nanomaterials in natural waters.
    Quik JT; Velzeboer I; Wouterse M; Koelmans AA; van de Meent D
    Water Res; 2014 Jan; 48():269-79. PubMed ID: 24119930
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stability of engineered nanomaterials in complex aqueous matrices: Settling behaviour of CeO2 nanoparticles in natural surface waters.
    Van Koetsem F; Verstraete S; Van der Meeren P; Du Laing G
    Environ Res; 2015 Oct; 142():207-14. PubMed ID: 26164115
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simplifying modeling of nanoparticle aggregation-sedimentation behavior in environmental systems: a theoretical analysis.
    Quik JT; van De Meent D; Koelmans AA
    Water Res; 2014 Oct; 62():193-201. PubMed ID: 24956601
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spatially explicit fate modelling of nanomaterials in natural waters.
    Quik JT; de Klein JJ; Koelmans AA
    Water Res; 2015 Sep; 80():200-8. PubMed ID: 26001284
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of a comprehensive understanding of aggregation-settling movement of CeO
    Lv B; Wang C; Hou J; Wang P; Miao L; Xing B
    Environ Pollut; 2020 Feb; 257():113584. PubMed ID: 31733953
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ionic-strength-dependent effect of suspended sediment on the aggregation, dissolution and settling of silver nanoparticles.
    Zhao J; Li Y; Wang X; Xia X; Shang E; Ali J
    Environ Pollut; 2021 Jun; 279():116926. PubMed ID: 33751945
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Heteroaggregation of titanium dioxide nanoparticles with model natural colloids under environmentally relevant conditions.
    Praetorius A; Labille J; Scheringer M; Thill A; Hungerbühler K; Bottero JY
    Environ Sci Technol; 2014 Sep; 48(18):10690-8. PubMed ID: 25127331
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Partitioning of nanoparticle-originated dissolved silver in natural and artificial sediments.
    Rajala JE; Vehniäinen ER; Väisänen A; Kukkonen JVK
    Environ Toxicol Chem; 2017 Oct; 36(10):2593-2601. PubMed ID: 28304113
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Impact of water composition on association of Ag and CeO₂ nanoparticles with aquatic macrophyte Elodea canadensis.
    Van Koetsem F; Xiao Y; Luo Z; Du Laing G
    Environ Sci Pollut Res Int; 2016 Mar; 23(6):5277-87. PubMed ID: 26564182
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transport and retention of differently coated CeO
    Degenkolb L; Dippon U; Pabst S; Klitzke S
    Environ Sci Pollut Res Int; 2019 Jun; 26(16):15905-15919. PubMed ID: 30963436
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Accumulation and toxicity of metal oxide nanoparticles in a soft-sediment estuarine amphipod.
    Hanna SK; Miller RJ; Zhou D; Keller AA; Lenihan HS
    Aquat Toxicol; 2013 Oct; 142-143():441-6. PubMed ID: 24121101
    [TBL] [Abstract][Full Text] [Related]  

  • 13. On the flocculation and settling characteristics of low- and high-concentration sediment suspensions: effects of particle concentration and salinity conditions.
    Zhu Z; Xiong X; Liang C; Zhao M
    Environ Sci Pollut Res Int; 2018 May; 25(14):14226-14243. PubMed ID: 29525859
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lake retention of manufactured nanoparticles.
    Koelmans AA; Quik JT; Velzeboer I
    Environ Pollut; 2015 Jan; 196():171-5. PubMed ID: 25463711
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Long-term transformation and fate of manufactured ag nanoparticles in a simulated large scale freshwater emergent wetland.
    Lowry GV; Espinasse BP; Badireddy AR; Richardson CJ; Reinsch BC; Bryant LD; Bone AJ; Deonarine A; Chae S; Therezien M; Colman BP; Hsu-Kim H; Bernhardt ES; Matson CW; Wiesner MR
    Environ Sci Technol; 2012 Jul; 46(13):7027-36. PubMed ID: 22463850
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Natural colloids are the dominant factor in the sedimentation of nanoparticles.
    Quik JT; Stuart MC; Wouterse M; Peijnenburg W; Hendriks AJ; van de Meent D
    Environ Toxicol Chem; 2012 May; 31(5):1019-22. PubMed ID: 22447393
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Patterns of short-term sedimentation in a freshwater created marsh.
    Harter SK; Mitsch WJ
    J Environ Qual; 2003; 32(1):325-34. PubMed ID: 12549573
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mobility of capped silver nanoparticles under environmentally relevant conditions.
    Thio BJ; Montes MO; Mahmoud MA; Lee DW; Zhou D; Keller AA
    Environ Sci Technol; 2012 Jul; 46(13):6985-91. PubMed ID: 22133047
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Resuspension and settling of helminth eggs in water: Interactions with cohesive sediments.
    Sengupta ME; Andersen TJ; Dalsgaard A; Olsen A; Thamsborg SM
    Water Res; 2012 Aug; 46(12):3903-12. PubMed ID: 22591818
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biotic and abiotic interactions in aquatic microcosms determine fate and toxicity of Ag nanoparticles. Part 1. Aggregation and dissolution.
    Unrine JM; Colman BP; Bone AJ; Gondikas AP; Matson CW
    Environ Sci Technol; 2012 Jul; 46(13):6915-24. PubMed ID: 22452441
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.