These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
168 related articles for article (PubMed ID: 24753229)
1. Molecular characterisation of a sodium channel gene and identification of a Phe1538 to Ile mutation in citrus red mite, Panonychus citri. Ding TB; Zhong R; Jiang XZ; Liao CY; Xia WK; Liu B; Dou W; Wang JJ Pest Manag Sci; 2015 Feb; 71(2):266-77. PubMed ID: 24753229 [TBL] [Abstract][Full Text] [Related]
2. The molecular marker of kdr against fenpropathrin in Tetranychus cinnabarinus. Xu Z; Shi L; Feng Y; He L J Econ Entomol; 2013 Dec; 106(6):2457-66. PubMed ID: 24498748 [TBL] [Abstract][Full Text] [Related]
3. Mutations of voltage-gated sodium channel contribute to pyrethroid resistance in Panonychus citri. Pan D; Luo QJ; O Reilly AO; Yuan GR; Wang JJ; Dou W Insect Sci; 2024 Jun; 31(3):803-816. PubMed ID: 37650774 [TBL] [Abstract][Full Text] [Related]
4. The sodium channel gene in Tetranychus cinnabarinus (Boisduval): identification and expression analysis of a mutation associated with pyrethroid resistance. Feng YN; Zhao S; Sun W; Li M; Lu WC; He L Pest Manag Sci; 2011 Aug; 67(8):904-12. PubMed ID: 21370394 [TBL] [Abstract][Full Text] [Related]
5. Regulation of three isoforms of SOD gene by environmental stresses in citrus red mite, Panonychus citri. Feng YC; Liao CY; Xia WK; Jiang XZ; Shang F; Yuan GR; Wang JJ Exp Appl Acarol; 2015 Sep; 67(1):49-63. PubMed ID: 26063404 [TBL] [Abstract][Full Text] [Related]
6. Identification of pyrethroid resistance associated mutations in the para sodium channel of the two-spotted spider mite Tetranychus urticae (Acari: Tetranychidae). Tsagkarakou A; Van Leeuwen T; Khajehali J; Ilias A; Grispou M; Williamson MS; Tirry L; Vontas J Insect Mol Biol; 2009 Oct; 18(5):583-93. PubMed ID: 19754737 [TBL] [Abstract][Full Text] [Related]
7. Expression characteristics of two novel cytochrome P450 genes involved in fenpropathrin resistance in Tetranychus cinnabarinus (Boisduval). Shi L; Xu Z; Shen G; Song C; Wang Y; Peng J; Zhang J; He L Pestic Biochem Physiol; 2015 Mar; 119():33-41. PubMed ID: 25868814 [TBL] [Abstract][Full Text] [Related]
8. Functional analysis of a chitinase gene during the larval-nymph transition in Panonychus citri by RNA interference. Xia WK; Shen XM; Ding TB; Niu JZ; Zhong R; Liao CY; Feng YC; Dou W; Wang JJ Exp Appl Acarol; 2016 Sep; 70(1):1-15. PubMed ID: 27388447 [TBL] [Abstract][Full Text] [Related]
9. Spirodiclofen and spirotetramat bioassays for monitoring resistance in citrus red mite, Panonychus citri (Acari: Tetranychidae). Ouyang Y; Montez GH; Liu L; Grafton-Cardwell EE Pest Manag Sci; 2012 May; 68(5):781-7. PubMed ID: 22102515 [TBL] [Abstract][Full Text] [Related]
10. Overexpression of a nuclear receptor HR96 contributes to spirodiclofen susceptibility in Panonychus citri (McGregor). Li SC; Cheng LY; Yang QQ; Huang ZH; Shao BB; Yu SJ; Ding LL; Pan Q; Lei S; Liu L; Cong L; Ran C Pestic Biochem Physiol; 2024 Jun; 202():105952. PubMed ID: 38879306 [TBL] [Abstract][Full Text] [Related]
11. Collaborative contribution of six cytochrome P450 monooxygenase genes to fenpropathrin resistance in Tetranychus cinnabarinus (Boisduval). Shi L; Zhang J; Shen G; Xu Z; Xu Q; He L Insect Mol Biol; 2016 Oct; 25(5):653-65. PubMed ID: 27351452 [TBL] [Abstract][Full Text] [Related]
12. [Resistance realized heritability and risk assessment of Panonychus citri to avermectin and fenpropathrin]. He HG; Zhao ZM; Yan XH; Wang JJ Ying Yong Sheng Tai Xue Bao; 2011 Aug; 22(8):2147-52. PubMed ID: 22097380 [TBL] [Abstract][Full Text] [Related]
13. Spraying pyrethroid and neonicotinoid insecticides can induce outbreaks of Panonychus citri (Trombidiformes: Tetranychidae) in citrus groves. Zanardi OZ; Bordini GP; Franco AA; de Morais MR; Yamamoto PT Exp Appl Acarol; 2018 Nov; 76(3):339-354. PubMed ID: 30341475 [TBL] [Abstract][Full Text] [Related]
14. Parallel evolution of cytochrome b mediated bifenazate resistance in the citrus red mite Panonychus citri. Van Leeuwen T; Van Nieuwenhuyse P; Vanholme B; Dermauw W; Nauen R; Tirry L Insect Mol Biol; 2011 Feb; 20(1):135-40. PubMed ID: 20735493 [TBL] [Abstract][Full Text] [Related]
15. Molecular characterization of two carboxylesterase genes of the citrus red mite, Panonychus citri (Acari: Tetranychidae). Zhang K; Niu JZ; Ding TB; Dou W; Wang JJ Arch Insect Biochem Physiol; 2013 Apr; 82(4):213-26. PubMed ID: 23404785 [TBL] [Abstract][Full Text] [Related]
16. Exposure to diflubenzuron results in an up-regulation of a chitin synthase 1 gene in citrus red mite, Panonychus citri (Acari: Tetranychidae). Xia WK; Ding TB; Niu JZ; Liao CY; Zhong R; Yang WJ; Liu B; Dou W; Wang JJ Int J Mol Sci; 2014 Feb; 15(3):3711-28. PubMed ID: 24590130 [TBL] [Abstract][Full Text] [Related]
17. Cross-resistance, inheritance and biochemical mechanism of abamectin resistance in a field-derived strain of the citrus red mite, Panonychus citri (Acari: Tetranychidae). Liu XY; Li K; Pan D; Dou W; Yuan GR; Wang JJ Pest Manag Sci; 2024 Mar; 80(3):1258-1265. PubMed ID: 37889506 [TBL] [Abstract][Full Text] [Related]
18. Mutations in the voltage-gated sodium channel gene associated with deltamethrin resistance in commercially sourced Phytoseiulus persimilis. Benavent-Albarracín L; Alonso M; Catalán J; Urbaneja A; Davies TGE; Williamson MS; González-Cabrera J Insect Mol Biol; 2020 Aug; 29(4):373-380. PubMed ID: 32249467 [TBL] [Abstract][Full Text] [Related]
19. Molecular characterization of vitellogenin and its receptor genes from citrus red mite, Panonychus citri (McGregor). Zhong R; Ding TB; Niu JZ; Xia WK; Liao CY; Dou W; Wang JJ Int J Mol Sci; 2015 Mar; 16(3):4759-73. PubMed ID: 25739087 [TBL] [Abstract][Full Text] [Related]
20. An analysis of the small RNA transcriptome of four developmental stages of the citrus red mite (Panonychus citri). Liu B; Dou W; Ding TB; Zhong R; Liao CY; Xia WK; Wang JJ Insect Mol Biol; 2014 Apr; 23(2):216-29. PubMed ID: 24330037 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]