BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

242 related articles for article (PubMed ID: 24753440)

  • 1. Calcium influx and postsynaptic proteins coordinate the dendritic filopodium-spine transition.
    Hu HT; Hsueh YP
    Dev Neurobiol; 2014 Oct; 74(10):1011-29. PubMed ID: 24753440
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Postsynaptic SDC2 induces transsynaptic signaling via FGF22 for bidirectional synaptic formation.
    Hu HT; Umemori H; Hsueh YP
    Sci Rep; 2016 Sep; 6():33592. PubMed ID: 27627962
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Arp2/3 Complex Is Essential for Distinct Stages of Spine Synapse Maturation, Including Synapse Unsilencing.
    Spence EF; Kanak DJ; Carlson BR; Soderling SH
    J Neurosci; 2016 Sep; 36(37):9696-709. PubMed ID: 27629719
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Drebrin-dependent actin clustering in dendritic filopodia governs synaptic targeting of postsynaptic density-95 and dendritic spine morphogenesis.
    Takahashi H; Sekino Y; Tanaka S; Mizui T; Kishi S; Shirao T
    J Neurosci; 2003 Jul; 23(16):6586-95. PubMed ID: 12878700
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cortactin-binding protein 2 modulates the mobility of cortactin and regulates dendritic spine formation and maintenance.
    Chen YK; Hsueh YP
    J Neurosci; 2012 Jan; 32(3):1043-55. PubMed ID: 22262902
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Syndecan-2 induces filopodia and dendritic spine formation via the neurofibromin-PKA-Ena/VASP pathway.
    Lin YL; Lei YT; Hong CJ; Hsueh YP
    J Cell Biol; 2007 Jun; 177(5):829-41. PubMed ID: 17548511
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Non-Ionotropic NMDA Receptor Signaling Drives Activity-Induced Dendritic Spine Shrinkage.
    Stein IS; Gray JA; Zito K
    J Neurosci; 2015 Sep; 35(35):12303-8. PubMed ID: 26338340
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Neurabin/protein phosphatase-1 complex regulates dendritic spine morphogenesis and maturation.
    Terry-Lorenzo RT; Roadcap DW; Otsuka T; Blanpied TA; Zamorano PL; Garner CC; Shenolikar S; Ehlers MD
    Mol Biol Cell; 2005 May; 16(5):2349-62. PubMed ID: 15743906
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regulation of postsynaptic structure and function by an A-kinase anchoring protein-membrane-associated guanylate kinase scaffolding complex.
    Robertson HR; Gibson ES; Benke TA; Dell'Acqua ML
    J Neurosci; 2009 Jun; 29(24):7929-43. PubMed ID: 19535604
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The stress-regulated protein M6a is a key modulator for neurite outgrowth and filopodium/spine formation.
    Alfonso J; Fernández ME; Cooper B; Flugge G; Frasch AC
    Proc Natl Acad Sci U S A; 2005 Nov; 102(47):17196-201. PubMed ID: 16286650
    [TBL] [Abstract][Full Text] [Related]  

  • 11. SNX26, a GTPase-activating protein for Cdc42, interacts with PSD-95 protein and is involved in activity-dependent dendritic spine formation in mature neurons.
    Kim Y; Ha CM; Chang S
    J Biol Chem; 2013 Oct; 288(41):29453-66. PubMed ID: 24003235
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Involvement of Neuron-Specific Factors in Dendritic Spinogenesis: Molecular Regulation and Association with Neurological Disorders.
    Hu HT; Shih PY; Shih YT; Hsueh YP
    Neural Plast; 2016; 2016():5136286. PubMed ID: 26819769
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interaction between telencephalin and ERM family proteins mediates dendritic filopodia formation.
    Furutani Y; Matsuno H; Kawasaki M; Sasaki T; Mori K; Yoshihara Y
    J Neurosci; 2007 Aug; 27(33):8866-76. PubMed ID: 17699668
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Change in the shape and density of dendritic spines caused by overexpression of acidic calponin in cultured hippocampal neurons.
    Rami G; Caillard O; Medina I; Pellegrino C; Fattoum A; Ben-Ari Y; Ferhat L
    Hippocampus; 2006; 16(2):183-97. PubMed ID: 16358313
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rapid turnover of actin in dendritic spines and its regulation by activity.
    Star EN; Kwiatkowski DJ; Murthy VN
    Nat Neurosci; 2002 Mar; 5(3):239-46. PubMed ID: 11850630
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Myosin IIb controls actin dynamics underlying the dendritic spine maturation.
    Koskinen M; Bertling E; Hotulainen R; Tanhuanpää K; Hotulainen P
    Mol Cell Neurosci; 2014 Jul; 61():56-64. PubMed ID: 24938665
    [TBL] [Abstract][Full Text] [Related]  

  • 17. NMDA receptor-dependent regulation of dendritic spine morphology by SAP102 splice variants.
    Chen BS; Thomas EV; Sanz-Clemente A; Roche KW
    J Neurosci; 2011 Jan; 31(1):89-96. PubMed ID: 21209193
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synaptogenesis on mature hippocampal dendrites occurs via filopodia and immature spines during blocked synaptic transmission.
    Petrak LJ; Harris KM; Kirov SA
    J Comp Neurol; 2005 Apr; 484(2):183-90. PubMed ID: 15736233
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular architecture of synaptic actin cytoskeleton in hippocampal neurons reveals a mechanism of dendritic spine morphogenesis.
    Korobova F; Svitkina T
    Mol Biol Cell; 2010 Jan; 21(1):165-76. PubMed ID: 19889835
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Very low density lipoprotein receptor regulates dendritic spine formation in a RasGRF1/CaMKII dependent manner.
    DiBattista AM; Dumanis SB; Song JM; Bu G; Weeber E; Rebeck GW; Hoe HS
    Biochim Biophys Acta; 2015 May; 1853(5):904-17. PubMed ID: 25644714
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.