BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

241 related articles for article (PubMed ID: 24753440)

  • 21. A Mercaptoacetamide-Based Class II Histone Deacetylase Inhibitor Increases Dendritic Spine Density via RasGRF1/ERK Pathway.
    Song JM; Sung YM; Nam JH; Yoon H; Chung A; Moffat E; Jung M; Pak DT; Kim J; Hoe HS
    J Alzheimers Dis; 2016; 51(2):591-604. PubMed ID: 26890742
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The stress-regulated protein M6a is a key modulator for neurite outgrowth and filopodium/spine formation.
    Alfonso J; Fernández ME; Cooper B; Flugge G; Frasch AC
    Proc Natl Acad Sci U S A; 2005 Nov; 102(47):17196-201. PubMed ID: 16286650
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Localized recruitment and activation of RhoA underlies dendritic spine morphology in a glutamate receptor-dependent manner.
    Schubert V; Da Silva JS; Dotti CG
    J Cell Biol; 2006 Jan; 172(3):453-67. PubMed ID: 16449195
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Calcium regulation of actin dynamics in dendritic spines.
    Oertner TG; Matus A
    Cell Calcium; 2005 May; 37(5):477-82. PubMed ID: 15820396
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Neuronal filopodium formation induced by the membrane glycoprotein M6a (Gpm6a) is facilitated by coronin-1a, Rac1, and p21-activated kinase 1 (Pak1).
    Alvarez Juliá A; Frasch AC; Fuchsova B
    J Neurochem; 2016 Apr; 137(1):46-61. PubMed ID: 26809475
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Essential role for the PKC target MARCKS in maintaining dendritic spine morphology.
    Calabrese B; Halpain S
    Neuron; 2005 Oct; 48(1):77-90. PubMed ID: 16202710
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Calcium-triggered exit of F-actin and IP(3) 3-kinase A from dendritic spines is rapid and reversible.
    Schell MJ; Irvine RF
    Eur J Neurosci; 2006 Nov; 24(9):2491-503. PubMed ID: 17100838
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Postsynaptic protein mobility in dendritic spines: long-term regulation by synaptic NMDA receptor activation.
    Sharma K; Fong DK; Craig AM
    Mol Cell Neurosci; 2006 Apr; 31(4):702-12. PubMed ID: 16504537
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Interaction of Cupidin/Homer2 with two actin cytoskeletal regulators, Cdc42 small GTPase and Drebrin, in dendritic spines.
    Shiraishi-Yamaguchi Y; Sato Y; Sakai R; Mizutani A; Knöpfel T; Mori N; Mikoshiba K; Furuichi T
    BMC Neurosci; 2009 Mar; 10():25. PubMed ID: 19309525
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Polarization of actin cytoskeleton is reduced in dendritic protrusions during early spine development in hippocampal neuron.
    Tatavarty V; Das S; Yu J
    Mol Biol Cell; 2012 Aug; 23(16):3167-77. PubMed ID: 22740628
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Overexpression of drebrin A in immature neurons induces the accumulation of F-actin and PSD-95 into dendritic filopodia, and the formation of large abnormal protrusions.
    Mizui T; Takahashi H; Sekino Y; Shirao T
    Mol Cell Neurosci; 2005 Sep; 30(1):149-57. PubMed ID: 16054392
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Combinatorial morphogenesis of dendritic spines and filopodia by SPAR and alpha-actinin2.
    Hoe HS; Lee JY; Pak DT
    Biochem Biophys Res Commun; 2009 Jun; 384(1):55-60. PubMed ID: 19393616
    [TBL] [Abstract][Full Text] [Related]  

  • 33. SK channels and NMDA receptors form a Ca2+-mediated feedback loop in dendritic spines.
    Ngo-Anh TJ; Bloodgood BL; Lin M; Sabatini BL; Maylie J; Adelman JP
    Nat Neurosci; 2005 May; 8(5):642-9. PubMed ID: 15852011
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Emerging Roles of Filopodia and Dendritic Spines in Motoneuron Plasticity during Development and Disease.
    Kanjhan R; Noakes PG; Bellingham MC
    Neural Plast; 2016; 2016():3423267. PubMed ID: 26843990
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The primate-specific peptide Y-P30 regulates morphological maturation of neocortical dendritic spines.
    Neumann JR; Dash-Wagh S; Jack A; Räk A; Jüngling K; Hamad MIK; Pape HC; Kreutz MR; Puskarjov M; Wahle P
    PLoS One; 2019; 14(2):e0211151. PubMed ID: 30759095
    [TBL] [Abstract][Full Text] [Related]  

  • 36. ARF6 and EFA6A regulate the development and maintenance of dendritic spines.
    Choi S; Ko J; Lee JR; Lee HW; Kim K; Chung HS; Kim H; Kim E
    J Neurosci; 2006 May; 26(18):4811-9. PubMed ID: 16672654
    [TBL] [Abstract][Full Text] [Related]  

  • 37. NESH regulates dendritic spine morphology and synapse formation.
    Bae J; Sung BH; Cho IH; Kim SM; Song WK
    PLoS One; 2012; 7(4):e34677. PubMed ID: 22485184
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Mechanical coupling between transsynaptic N-cadherin adhesions and actin flow stabilizes dendritic spines.
    Chazeau A; Garcia M; Czöndör K; Perrais D; Tessier B; Giannone G; Thoumine O
    Mol Biol Cell; 2015 Mar; 26(5):859-73. PubMed ID: 25568337
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Postsynaptic PDLIM5/Enigma Homolog binds SPAR and causes dendritic spine shrinkage.
    Herrick S; Evers DM; Lee JY; Udagawa N; Pak DT
    Mol Cell Neurosci; 2010 Feb; 43(2):188-200. PubMed ID: 19900557
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The role of glutamate in the morphological and physiological development of dendritic spines.
    Mattison HA; Popovkina D; Kao JP; Thompson SM
    Eur J Neurosci; 2014 Jun; 39(11):1761-70. PubMed ID: 24661419
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.