BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 24753477)

  • 1. A comparative study of orthotropic and isotropic bone adaptation in the femur.
    Geraldes DM; Phillips AT
    Int J Numer Method Biomed Eng; 2014 Sep; 30(9):873-89. PubMed ID: 24753477
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Consideration of multiple load cases is critical in modelling orthotropic bone adaptation in the femur.
    Geraldes DM; Modenese L; Phillips AT
    Biomech Model Mechanobiol; 2016 Oct; 15(5):1029-42. PubMed ID: 26578078
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Orthotropic bone remodelling around uncemented femoral implant: a comparison with isotropic formulation.
    Mathai B; Dhara S; Gupta S
    Biomech Model Mechanobiol; 2021 Jun; 20(3):1115-1134. PubMed ID: 33768358
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Trabecular bone adaptation with an orthotropic material model.
    Miller Z; Fuchs MB; Arcan M
    J Biomech; 2002 Feb; 35(2):247-56. PubMed ID: 11784543
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A novel approach to estimate trabecular bone anisotropy from stress tensors.
    Hazrati Marangalou J; Ito K; van Rietbergen B
    Biomech Model Mechanobiol; 2015 Jan; 14(1):39-48. PubMed ID: 24777672
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Predicting the yield of the proximal femur using high-order finite-element analysis with inhomogeneous orthotropic material properties.
    Yosibash Z; Tal D; Trabelsi N
    Philos Trans A Math Phys Eng Sci; 2010 Jun; 368(1920):2707-23. PubMed ID: 20439270
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Concept and development of an orthotropic FE model of the proximal femur.
    Wirtz DC; Pandorf T; Portheine F; Radermacher K; Schiffers N; Prescher A; Weichert D; Niethard FU
    J Biomech; 2003 Feb; 36(2):289-93. PubMed ID: 12547369
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A novel approach to estimate trabecular bone anisotropy using a database approach.
    Hazrati Marangalou J; Ito K; Cataldi M; Taddei F; van Rietbergen B
    J Biomech; 2013 Sep; 46(14):2356-62. PubMed ID: 23972430
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanobiochemical bone remodelling around an uncemented acetabular component: influence of bone orthotropy.
    Saviour CM; Mathai B; Gupta S
    Med Biol Eng Comput; 2024 Jun; 62(6):1717-1732. PubMed ID: 38353834
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Orientation of orthotropic material properties in a femur FE model: a method based on the principal stresses directions.
    San Antonio T; Ciaccia M; Müller-Karger C; Casanova E
    Med Eng Phys; 2012 Sep; 34(7):914-9. PubMed ID: 22100056
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A new approach to determine the accuracy of morphology-elasticity relationships in continuum FE analyses of human proximal femur.
    Hazrati Marangalou J; Ito K; van Rietbergen B
    J Biomech; 2012 Nov; 45(16):2884-92. PubMed ID: 23017379
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of an inhomogeneous orthotropic and isotropic material models used for FE analyses.
    Baca V; Horak Z; Mikulenka P; Dzupa V
    Med Eng Phys; 2008 Sep; 30(7):924-30. PubMed ID: 18243761
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Patient-specific finite-element analyses of the proximal femur with orthotropic material properties validated by experiments.
    Trabelsi N; Yosibash Z
    J Biomech Eng; 2011 Jun; 133(6):061001. PubMed ID: 21744921
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Relating age and micro-architecture with apparent-level elastic constants: a micro-finite element study of female cortical bone from the anterior femoral midshaft.
    Donaldson FE; Pankaj P; Cooper DM; Thomas CD; Clement JG; Simpson AH
    Proc Inst Mech Eng H; 2011 Jun; 225(6):585-96. PubMed ID: 22034742
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Determination of orthotropic bone elastic constants using FEA and modal analysis.
    Taylor WR; Roland E; Ploeg H; Hertig D; Klabunde R; Warner MD; Hobatho MC; Rakotomanana L; Clift SE
    J Biomech; 2002 Jun; 35(6):767-73. PubMed ID: 12020996
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of isotropic and orthotropic material property assignments on femoral finite element models under two loading conditions.
    Peng L; Bai J; Zeng X; Zhou Y
    Med Eng Phys; 2006 Apr; 28(3):227-33. PubMed ID: 16076560
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modified bone density-dependent orthotropic material model of human mandibular bone.
    Gačnik F; Ren Z; Hren NI
    Med Eng Phys; 2014 Dec; 36(12):1684-92. PubMed ID: 25456399
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of orthotropy on biomechanics of peri-implant bone in complete mandible model with full dentition.
    Ding X; Liao SH; Zhu XH; Wang HM
    Biomed Res Int; 2014; 2014():709398. PubMed ID: 25530968
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Some factors that affect the comparison between isotropic and orthotropic inhomogeneous finite element material models of femur.
    Yang H; Ma X; Guo T
    Med Eng Phys; 2010 Jul; 32(6):553-60. PubMed ID: 20435503
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Effect of three kinds of modelling of mandible on the finite element analysis of implant].
    Chen QS; Ding X; Wang HM
    Zhonghua Kou Qiang Yi Xue Za Zhi; 2016 Oct; 51(10):628-633. PubMed ID: 27719709
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 12.